1146 Topological Order (25 point(s))
作者:互联网
思路:
按照给定序列,如果是拓扑序列,那么就输出序号,序号从 0 开始。
1146 Topological Order (25 point(s))
This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.
Example:
#include<iostream>
#include<vector>
#include<unordered_set>
#include<vector>
using namespace std;
struct Graph {
int Nv;
int Ne;
vector<unordered_set<int>> in;
vector<unordered_set<int>> out;
};
bool isTopological(Graph G, vector<int> &ans)
{
for(auto &x : ans) {
if(!G.in[x].empty()) return false;
for(auto y : G.out[x]) G.in[y].erase(x);
}
return true;
}
int main()
{
int N, M, K;
cin >> N >> M;
Graph G;
G.Nv = N, G.Ne = M, G.in.resize(N+1), G.out.resize(N+1);
for(int i = 0 ; i < M; i++) {
int v1, v2;
cin >> v1 >> v2;
G.out[v1].insert(v2), G.in[v2].insert(v1);
}
cin >> K;
vector<int> ans;
for(int i = 0; i < K; i++) {
vector<int> tmp(N);
for(int k = 0; k < N; k++) cin >> tmp[k];
if(!isTopological(G, tmp)) ans.push_back(i);
}
for(auto x = ans.begin(); x != ans.end(); x++)
cout<< (x == ans.begin() ? "" : " ") << *x ;
}
标签:25,1146,int,v2,vector,ans,include,Order,out 来源: https://blog.csdn.net/u012571715/article/details/114674623