其他分享
首页 > 其他分享> > D - Snacks HDU - 5692(dfs 序+线段树维护树上前缀和)

D - Snacks HDU - 5692(dfs 序+线段树维护树上前缀和)

作者:互联网

题意

  1. 给我们一棵有 n 个节点的树,结点点编号从 0 开始,每个节点 i 有权值 a [i],给我们 2 种操作,
    1. 0 x y 第一种:修改 x 点的权值为 y
    2. 1 x 第二种:从 0 结点出发经过 x 的路线中,点权和最大的路线的,点权和是多少?,
  2. 有 m 次询问

思路

  1. 这题真是一个很不错的题,里面的思路很巧妙,但也有 坑
  2. 首先坑我最狠的一个坑是:懒标 lazy 的数据类型是 long long。
  3. 首先我们先对这棵树跑个 dfs 序,在跑 dfs 序的时候,顺带求出树上前缀和,
  4. 之后用线段树维护树上前缀和最大值,之后查询和修改时,根据已经求得的 dfs 序,定位到对应区间来修改即可。

代码

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <string>
#include <queue>
#include <map>
#include <bitset>
#include <vector>
using namespace std;
void fre() { system("clear"), freopen("A.txt", "r", stdin); freopen("Ans.txt","w",stdout); }
void Fre() { system("clear"), freopen("A.txt", "r", stdin);}
void Run(int x = 0) {     
#ifdef ACM  //宏定义免注释 freopen
    if (! x) fre(); else Fre();
#endif
}
#define ios ios::sync_with_stdio(false)
#define Pi acos(-1)
#define pb push_back
#define fi first
#define se second
#define db double
#define ll long long
#define ull unsigned long long
#define Pir pair<ll, ll>
#define m_p make_pair
#define for_(i, s, e) for(ll i = (ll)(s); i <= (ll)(e); i ++)
#define rep_(i, e, s) for(ll i = (ll)(e); i >= (ll)(s); i --)
#define memset(a, b, c) memset(a, (int)b, c);
#define size() size() * 1LL
#define sc scanf
#define pr printf
#define sd(a) sc("%lld", &a)
#define ss(a) sc("%s", a)
#define __  pr( "------------------------\n" );
#define ___ pr("\n------------------------\n");
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define esp 1e-7
#define mod (ll)(1e9 + 7)
/*=========================ACMer===========================*/
const ll mxn = 2e5 + 10;
int a[mxn];
int L[mxn], R[mxn], idx[mxn], tim;
ll pm[mxn];                 //从根节点到当前节点的前缀和
vector<int> e[mxn];

void init(int n)
{
    for_(i, 0, n + 10) e[i].clear();
    tim = 0;
}

struct Tree
{
    int l, r;
    ll lazy;
    ll sum;
} tree[mxn << 2];

void dfs(int u, int p)
{
    L[u] = ++ tim;
    idx[tim] = u;
    pm[u] = pm[p] + a[u];
    for_(i, 0, e[u].size() - 1)
    {
        int v = e[u][i];
        if(v == p) continue;
        dfs(v, u);
    }
    R[u] = tim;
}

void push_up(int rt)
{
    tree[rt].sum = max(tree[rt << 1].sum, tree[rt << 1 | 1].sum);
}

void push_down(int rt)
{
    if(tree[rt].lazy)
    {
        tree[rt << 1].lazy += tree[rt].lazy;
        tree[rt << 1 | 1].lazy += tree[rt].lazy;
        tree[rt << 1].sum += tree[rt].lazy;
        tree[rt << 1 | 1].sum += tree[rt].lazy;
        tree[rt].lazy = 0;
    }
}

void build(int rt, int l, int r)
{
    tree[rt].l = l, tree[rt].r = r, tree[rt].lazy = 0;
    tree[rt].sum = 0;
    if(l == r)
    {
        tree[rt].sum = pm[idx[l]];
        return;
    }

    int md = (l + r) >> 1;
    build(rt << 1, l, md);
    build(rt << 1 | 1, md + 1, r);
    push_up(rt);
}

void update(int rt, int l, int r, int k)
{
    if(tree[rt].l > r || tree[rt].r < l) return;
    if(tree[rt].l >= l && tree[rt].r <= r)
    {
        tree[rt].sum += k;
        tree[rt].lazy += k;
        return;
    }

    push_down(rt);
    update(rt << 1, l, r, k);
    update(rt << 1 | 1, l, r, k);
    push_up(rt);
}

ll query(ll rt, ll l, ll r)
{
    if(tree[rt].l > r || tree[rt].r < l) return -INF;
    if(tree[rt].l >= l && tree[rt].r <= r)
    {
        return tree[rt].sum;
    }

    push_down(rt);
    return max(query(rt << 1, l, r), query(rt << 1 | 1, l, r));
}

int main()
{
    Run();
    int T, cas = 1; sc("%d", &T);
    while(T --)
    {
        int n, m;
        sc("%d %d", &n, &m);
        init(n);
        int u, v;
        for_(i, 1, n - 1)
        {
            sc("%d %d", &u, &v);
            e[u].pb(v);
            e[v].pb(u);
        }
        for_(i, 0, n - 1) sc("%d", &a[i]);
        dfs(0, mxn - 1);
        build(1, 1, n);
        pr("Case #%d:\n", cas ++);
        int op, x, y;
        while(m --)
        {
            sc("%d", &op);
            if(op == 0)
            {
                sc("%d %d", &x, &y);
                int c = y - a[x];
                update(1, L[x], R[x], c);
                a[x] = y;
            }
            else
            {
                sc("%d", &x);
                ll ans = query(1, L[x], R[x]);
                pr("%lld\n", ans);
            }
        }
    }

    return 0;
}

标签:rt,HDU,Snacks,int,ll,tree,dfs,include,define
来源: https://blog.csdn.net/qq_34261446/article/details/114335455