numpy中的fancy indexing
作者:互联网
Boolean Array Indexing
a: ndarray
b: ndarray of bool
a.shape == b.shape
a[b]
a = np.arange(-2, 3)
print(a)
print(a[[True, False, True, False, False]])
print(a > 0)
print(a[a > 0])
[-2 -1 0 1 2]
[-2 0]
[False False False True True]
[1 2]
Integer Array Indexing
a: ndarray
l: tuple,可以去掉括号(语法糖)
a的维度
≥
\ge
≥ l的“维度”
a[l]
1D数组
a = np.arange(5, 10)
print(a)
print(a[[0, 0, 2]])
[5 6 7 8 9]
[5 5 7]
nD数组
a = np.arange(16).reshape(4, 4)
print(a)
print(a[[0, 1]])
print(a[[0, 1], [2, 3]])
print(a[[[0,0],
[1,1]],
[[2,2],
[3,3]]])
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]
[[0 1 2 3]
[4 5 6 7]]
[2 7]
[[2 2]
[7 7]]
标签:False,True,indexing,fancy,np,arange,print,numpy,ndarray 来源: https://blog.csdn.net/w112348/article/details/114196605