其他分享
首页 > 其他分享> > 数据结构串讲

数据结构串讲

作者:互联网

本篇属于数据结构串讲内容。讲真,一说数学我就头大,一看LeetCode就头疼。

一 hash

242. Valid Anagram

Given two strings s and t , write a function to determine if t is an anagram of s.

Example 1:

Input: s = "anagram", t = "nagaram"
Output: true
Example 2:

Input: s = "rat", t = "car"
Output: false
Note:
You may assume the string contains only lowercase alphabets.

Follow up:
What if the inputs contain unicode characters? How would you adapt your solution to such case?

如果是Python,一行代码哈:Python 得用字典是hash

return sorted(s) == sorted(t)

Java吧。如果想到一种排序策略,再去比较。

    
    //数组
    public boolean isAnagram(String s, String t) {
        if(s.trim().equals(t.trim().trim())){
            return true;
        }

        char[] sChars = s.toCharArray();
        char[] tChars = t.toCharArray();
        Arrays.sort(sChars);
        Arrays.sort(tChars);
        return Arrays.equals(sChars, tChars);
    }

排序嘛。时间复杂度:NlogN.

还可以用hash表:我就用hashmap替代了。

    public static boolean isAnagram(String s, String t) {
        if(s.trim().equals(t.trim().trim())){
            return true;
        }

        Map<Character,Integer> m1 = new HashMap<>();
        Map<Character,Integer> m2 = new HashMap<>();
        for(Character c:s.toCharArray()){
            m1.put(c, m1.getOrDefault(c, 0) + 1);
        }
        for(Character c:t.toCharArray()){
            m2.put(c, m2.getOrDefault(c, 0) + 1);
        }
         return  m1.equals(m2);

    }

理论上这个快N嘛,实际上慢多了。哪些1ms的大佬有更好的方法。

15 threeSum

Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.

Notice that the solution set must not contain duplicate triplets.

 

Example 1:

Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Example 2:

Input: nums = []
Output: []
Example 3:

Input: nums = [0]
Output: []

最暴力的解法:N^3,这个题目要注意的是:结果不能有重复的。

使用hashmap: 时间复杂度降到N^2. 

 public List<List<Integer>> threeSum(int[] nums) {
        List<List<Integer>> reslist = new ArrayList<List<Integer>>();
		if (nums.length < 3) return reslist;
		Set result = new HashSet();

		//先排序
		Arrays.sort(nums);
        Integer t;
		Map<Integer,Integer> map = new HashMap<>();
		for(int k=0;k<nums.length;k++ ){
			map.put(nums[k],k);
		}

		for(int i=0;i< nums.length;i++){
              if(i>0&& nums[i] == nums[i-1]){
                    continue;
                }
			for(int j=i+1;j< nums.length;j++){
                  if(j > i+1 && nums[j] == nums[j-1]){
                      continue;
                  }   
                    if((t = map.get(0-nums[i]-nums[j])) != null){
                        if(t > j){                      
                          result.add(new ArrayList<>(Arrays.asList(nums[i], nums[j], nums[t])));
                        } 
                        else{
                            break;
                        }                                                  
                    }
			}
		}
        return new ArrayList<>(result);
    }

上面使用hashmap这不是最优解,最优解是两指针从头尾往中间夹的方式。我是不会做的,大神们的这种思路也是看半天才理解。

反反复复看题解,最终击败百分之五

先排序,如果我们第一个数然后去找其他两个数(把这两个数之和看做是一个数),那么问题就变成在有序数组中从[i+1, len-1]这个范围内找到一个符合要求的数,那么就变成了双指针问题。

而是两个边界left和right的和,》0则right 移动,《0则left移动。正好就是所求的解之一。继续寻找其他解,知道双指针相遇。代码不贴了。

小结

hash结构就是对于查找起到O(1)作用。

二 树

  98. Validate Binary Search Tree

Given the root of a binary tree, determine if it is a valid binary search tree (BST).

A valid BST is defined as follows:

The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than the node's key.
Both the left and right subtrees must also be binary search trees.

Input: root = [2,1,3]
Output: true

树:常见的就是遍历,这个很适合用递归。基本思路是找到递归的条件。 

这个就是如果违反规则,左侧比中间小,中间比右侧小就是false,否则都递归遍历完左右子树后就是true。时间复杂度O(N)

public boolean isValidBST(TreeNode root) {
      return  validate(root,Long.MIN_VALUE,Long.MAX_VALUE);
    }

      public  boolean validate(TreeNode node,long min, long max) {
        if(node == null){
            return  true;
        }
        
        if(node.val<=min|| node.val>=max){
            return  false;
        }
       return   validate(node.left,min,node.val )&& validate(node.right,node.val,max);
    }

代码为啥要用Long而不是Integer,因为边界条件会卡住。

常见遍历策略:广度优先、深度优先

22. Generate Parentheses

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

Example 1:

Input: n = 3
Output: ["((()))","(()())","(())()","()(())","()()()"]
Example 2:

Input: n = 1
Output: ["()"]
 

Constraints:

1 <= n <= 8

先画做括号,也是采用深度优先遍历策略。

    List<String> result = new ArrayList<>();
    public List<String> generateParenthesis(int n) {
         String res= "";
		 dfs(n,n,res);
		 
		return result;   
    }

    private  void dfs(int left, int right, String res) {
		//返回条件
		if(left<0|| right<0|| left>right){
			return;
		}
		//rule
		if(left==0&& right==0){
			result.add(res);
			return;
		}
		dfs(left-1, right, res+"(") ;
		dfs(left, right-1, res+")") ;
	}

堆的操作:插入、删除

347. Top K Frequent Elements

Given a non-empty array of integers, return the k most frequent elements.

Example 1:

Input: nums = [1,1,1,2,2,3], k = 2
Output: [1,2]
Example 2:

Input: nums = [1], k = 1
Output: [1]
Note:

You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
Your algorithm's time complexity must be better than O(n log n), where n is the array's size.
It's guaranteed that the answer is unique, in other words the set of the top k frequent elements is unique.
You can return the answer in any order.

经典top k问题。使用hashmap计数:再取前topk 是个比较容易想到的思路。 使用优先级队列自定义堆。

public int[] topKFrequent(int[] nums, int k) {
        int[] reslut = new int[k];
		//coner case
		if(nums == null|| nums.length==0){
			return nums;
		}
		//遍历
		Map<Integer,Integer> map = new HashMap<Integer,Integer>();
		for(int i=0; i<nums.length;i++ ){
			if(map.containsKey(nums[i]) ){
				map.put(nums[i], map.get(nums[i])+1 );
			}else{
				map.put(nums[i], 1);
			}
			
		}
		 PriorityQueue<Map.Entry<Integer, Integer>> pq = 
                 new PriorityQueue<>((a,b)->(b.getValue()-a.getValue() ) );
		//保存到queue
		for( Map.Entry<Integer,Integer> entry : map.entrySet() ){
			pq.add( entry);
		}
		//输出结果
		for (int i = 0; i < k; i++) {			
			reslut[i]=pq.poll().getKey();		
		}
		return reslut;
    }

时间复杂度:O(Nlogk)

标签:node,return,串讲,nums,int,Output,new,数据结构
来源: https://blog.csdn.net/bohu83/article/details/113881701