其他分享
首页 > 其他分享> > causalinference因果推断分析

causalinference因果推断分析

作者:互联网

python虽然与R一样都可以做数据分析,但是在计量方面较为薄弱,python更像是干脏活,清洗数据用的。现在慢慢的python也有一些在计量的包,比如causalinference,这个包可以做因果推断分析。

安装

!pip3 install causalinference
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting causalinference
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/dc/7f/4504b42ef5a1158075954f54d08b95b2d5b2186da0ef9fcbcd0cf31411f2/CausalInference-0.1.3-py3-none-any.whl (51 kB)
[K     |████████████████████████████████| 51 kB 81 kB/s eta 0:00:0101
[?25hInstalling collected packages: causalinference
Successfully installed causalinference-0.1.3

数据导入

import pandas as pd
df = pd.read_csv('data.csv')
df

数据描述

from causalinference import CausalModel
Y = df['y'].values
D = df['istreatment'].values
X = df[['x1', 'x2', 'x3']].values
#CausalModel参数依次为Y, D, X。其中Y为因变量
causal = CausalModel(Y, D, X)
causal
<causalinference.causal.CausalModel at 0x13b9348d0>

描述性统计分析

print(causal.summary_stats)
Summary Statistics
                      Controls (N_c=2509)        Treated (N_t=2491)             
       Variable         Mean         S.d.         Mean         S.d.     Raw-diff
--------------------------------------------------------------------------------
              Y       -1.012        1.742        4.978        3.068        5.989
                      Controls (N_c=2509)        Treated (N_t=2491)             
       Variable         Mean         S.d.         Mean         S.d.     Nor-diff
--------------------------------------------------------------------------------
             X0       -0.343        0.940        0.336        0.961        0.714
             X1       -0.347        0.936        0.345        0.958        0.730
             X2       -0.313        0.940        0.306        0.963        0.650

causal.summary_stats含有的指标字段名

causal.summary_stats.keys()
dict_keys(['N', 'K', 'N_c', 'N_t', 'Y_c_mean', 'Y_t_mean', 'Y_c_sd', 'Y_t_sd', 'rdiff', 'X_c_mean', 'X_t_mean', 'X_c_sd', 'X_t_sd', 'ndiff'])

使用OLS估计处置效应

估计处置效应最简单的方法是使用OLS方法,

CausalModel.est_via_ols(adj)

该方法有一个参数adj

causal.est_via_ols(adj=2)
print(causal.estimates)
Treatment Effect Estimates: OLS
                     Est.       S.e.          z      P>|z|      [95% Conf. int.]
--------------------------------------------------------------------------------
           ATE      3.017      0.034     88.740      0.000      2.950      3.083
           ATC      2.031      0.040     51.183      0.000      1.953      2.108
           ATT      4.010      0.039    103.964      0.000      3.934      4.086

参数解读

你们再试试adj设置为0和1分别运行出什么结果

倾向得分估计

我们估计处置效应时,很希望处置组和控制组很类似。比如研究受教育水平对个人收入的影响,其他变量如家庭背景、年龄、地区等协变量存在差异,我们希望控制组和处置组的之间的协变量平衡性尽可能的好,这样两个组就会很像,当对这两个组的受教育水平进行操作时,两个组的收入差异可以认为是受教育水平带来的。

让两个组很像,这里就用到倾向得分估计。

causal.est_propensity_s()
print(causal.propensity)
Estimated Parameters of Propensity Score
                    Coef.       S.e.          z      P>|z|      [95% Conf. int.]
--------------------------------------------------------------------------------
     Intercept      0.005      0.035      0.145      0.885     -0.063      0.073
            X1      0.999      0.041     24.495      0.000      0.919      1.079
            X0      1.000      0.041     24.543      0.000      0.920      1.080
            X2      0.933      0.040     23.181      0.000      0.855      1.012

分层方法估计处置效应

倾向得分估计,让两个组尽量相似,但实际上这个相似值范围有点大。比如假设受教育水平对个人收入的影响,身高、体重等颜值信息(协变量)其实对收入也是有影响的,那么就应该对人群进行分层,不同颜值水平(分组)下受教育水平对个人收入的影响。

分层方法估计CausalModel.stratify_s() 自动选择协变量

causal.stratify_s()  
print(causal.strata) 
Stratification Summary
              Propensity Score         Sample Size     Ave. Propensity   Outcome
   Stratum      Min.      Max.  Controls   Treated  Controls   Treated  Raw-diff
--------------------------------------------------------------------------------
         1     0.001     0.043       153         5     0.024     0.029    -0.049
         2     0.043     0.069       148         8     0.056     0.059     0.142
         3     0.070     0.118       283        29     0.093     0.092     0.953
         4     0.119     0.178       268        45     0.147     0.147     1.154
         5     0.178     0.240       247        65     0.208     0.210     1.728
         6     0.240     0.361       451       174     0.299     0.300     2.093
         7     0.361     0.427       196       117     0.393     0.395     2.406
         8     0.427     0.499       153       159     0.465     0.464     2.868
         9     0.499     0.532        82        75     0.515     0.515     2.973
        10     0.532     0.568        65        91     0.551     0.553     3.259
        11     0.568     0.630       114       198     0.600     0.601     3.456
        12     0.630     0.758       180       445     0.693     0.696     3.918
        13     0.758     0.818        77       236     0.787     0.789     4.503
        14     0.818     0.876        57       255     0.845     0.849     4.937
        15     0.876     0.933        23       289     0.904     0.904     5.171
        16     0.933     0.998        12       300     0.957     0.963     6.822

更多详细信息可阅读代码中说明论文,可在项目中下载到的。

标签:处置,变量,causalinference,推断,adj,causal,因果,0.000
来源: https://blog.csdn.net/sinat_23971513/article/details/113695993