其他分享
首页 > 其他分享> > BindsNET学习系列 ——Connection

BindsNET学习系列 ——Connection

作者:互联网

相关源码:bindsnet/bindsnet/network/topology.py

 

class Connection(AbstractConnection):
    # language=rst
    """
    Specifies synapses between one or two populations of neurons.
    """

    def __init__(
        self,
        source: Nodes,
        target: Nodes,
        nu: Optional[Union[float, Sequence[float]]] = None,
        reduction: Optional[callable] = None,
        weight_decay: float = 0.0,
        **kwargs
    ) -> None:
        # language=rst
        """
        Instantiates a :code:`Connection` object.

        :param source: A layer of nodes from which the connection originates.
        :param target: A layer of nodes to which the connection connects.
        :param nu: Learning rate for both pre- and post-synaptic events.
        :param reduction: Method for reducing parameter updates along the minibatch
            dimension.
        :param weight_decay: Constant multiple to decay weights by on each iteration.

        Keyword arguments:

        :param LearningRule update_rule: Modifies connection parameters according to
            some rule.
        :param torch.Tensor w: Strengths of synapses.
        :param torch.Tensor b: Target population bias.
        :param float wmin: Minimum allowed value on the connection weights.
        :param float wmax: Maximum allowed value on the connection weights.
        :param float norm: Total weight per target neuron normalization constant.
        """
        super().__init__(source, target, nu, reduction, weight_decay, **kwargs)

        w = kwargs.get("w", None)
        if w is None:
            if self.wmin == -np.inf or self.wmax == np.inf:
                w = torch.clamp(torch.rand(source.n, target.n), self.wmin, self.wmax)
            else:
                w = self.wmin + torch.rand(source.n, target.n) * (self.wmax - self.wmin)
        else:
            if self.wmin != -np.inf or self.wmax != np.inf:
                w = torch.clamp(torch.as_tensor(w), self.wmin, self.wmax)

        self.w = Parameter(w, requires_grad=False)

        b = kwargs.get("b", None)
        if b is not None:
            self.b = Parameter(b, requires_grad=False)
        else:
            self.b = None

        if isinstance(self.target, CSRMNodes):
            self.s_w = None

    def compute(self, s: torch.Tensor) -> torch.Tensor:
        # language=rst
        """
        Compute pre-activations given spikes using connection weights.

        :param s: Incoming spikes.
        :return: Incoming spikes multiplied by synaptic weights (with or without
                 decaying spike activation).
        """
        # Compute multiplication of spike activations by weights and add bias.
        if self.b is None:
            post = s.view(s.size(0), -1).float() @ self.w
        else:
            post = s.view(s.size(0), -1).float() @ self.w + self.b
        return post.view(s.size(0), *self.target.shape)

    def compute_window(self, s: torch.Tensor) -> torch.Tensor:
        # language=rst
        """"""

        if self.s_w == None:
            # Construct a matrix of shape batch size * window size * dimension of layer
            self.s_w = torch.zeros(
                self.target.batch_size, self.target.res_window_size, *self.source.shape
            )

        # Add the spike vector into the first in first out matrix of windowed (res) spike trains
        self.s_w = torch.cat((self.s_w[:, 1:, :], s[:, None, :]), 1)

        # Compute multiplication of spike activations by weights and add bias.
        if self.b is None:
            post = (
                self.s_w.view(self.s_w.size(0), self.s_w.size(1), -1).float() @ self.w
            )
        else:
            post = (
                self.s_w.view(self.s_w.size(0), self.s_w.size(1), -1).float() @ self.w
                + self.b
            )

        return post.view(
            self.s_w.size(0), self.target.res_window_size, *self.target.shape
        )

    def update(self, **kwargs) -> None:
        # language=rst
        """
        Compute connection's update rule.
        """
        super().update(**kwargs)

    def normalize(self) -> None:
        # language=rst
        """
        Normalize weights so each target neuron has sum of connection weights equal to
        ``self.norm``.
        """
        if self.norm is not None:
            w_abs_sum = self.w.abs().sum(0).unsqueeze(0)
            w_abs_sum[w_abs_sum == 0] = 1.0
            self.w *= self.norm / w_abs_sum

    def reset_state_variables(self) -> None:
        # language=rst
        """
        Contains resetting logic for the connection.
        """
        super().reset_state_variables()

 

标签:None,系列,target,self,torch,param,Connection,size,BindsNET
来源: https://www.cnblogs.com/lucifer1997/p/14350180.html