其他分享
首页 > 其他分享> > 【CVX】Interpolation with convex functions & Penalty function approx.

【CVX】Interpolation with convex functions & Penalty function approx.

作者:互联网

Navigator

Interpolation

Question: When does there exist a convex function f : R k → R f:\mathbb{R}^k\to \mathbb{R} f:Rk→R with d o m f = R k dom f=\mathbb{R}^k domf=Rk, that satisfies the interpolation conditions
f ( u i ) = y i , i = 1 , … , m f(u_i)=y_i, i=1, \dots, m f(ui​)=yi​,i=1,…,m
at given points u i ∈ R k u_i\in\mathbb{R}^k ui​∈Rk?
Answer: If and only if there exist g 1 , g 2 , … , g m g_1, g_2, \dots, g_m g1​,g2​,…,gm​ such that
y j ≥ y i + g i T ( u j − u i ) , i , j = 1 , … , m (1) y_j\geq y_i+g_i^T(u_j-u_i), \quad i,j=1, \dots, m\tag{1} yj​≥yi​+giT​(uj​−ui​),i,j=1,…,m(1)
At each u i u_i ui​ we can find a vector g i g_i gi​ such that
f ( z ) ≥ f ( u i ) + g i T ( z − u i ) (2) f(z)\geq f(u_i)+g_i^T(z-u_i)\tag{2} f(z)≥f(ui​)+giT​(z−ui​)(2)
for all z z z. If f f f is differentiable, we can take g i = ∇ f ( u i ) g_i=\nabla f(u_i) gi​=∇f(ui​) by finding a supporting hyperplane to e p i f epi f epif at ( u i , y i ) (u_i, y_i) (ui​,yi​) ( g i g_i gi​ are called subgradients). By applying ( 2 ) (2) (2) to z = u j z=u_j z=uj​, we obtain ( 1 ) (1) (1).
Conversely, suppose g 1 , g 2 , … , g m g_1, g_2, \dots, g_m g1​,g2​,…,gm​ satisfy ( 1 ) (1) (1). Define f f f as
f ( z ) = max ⁡ i = 1 , … , m ( y i + g i T ( z − u i ) ) f(z)=\max_{i=1, \dots, m}(y_i+g_i^T(z-u_i)) f(z)=i=1,…,mmax​(yi​+giT​(z−ui​))

Fitting a convex function to given data

min ⁡ ∑ i = 1 m ( y i − f ( u i ) ) 2 s . t . { f : R k → R d o m f = R k \min\sum_{i=1}^m (y_i-f(u_i))^2\\ s.t. \begin{cases} f:\mathbb{R}^k\to\mathbb{R} \\ dom f=\mathbb{R}^k \end{cases} mini=1∑m​(yi​−f(ui​))2s.t.{f:Rk→Rdomf=Rk​
This is an infinite-dimensional problem, since the variable is f f f, which is in the space of continous real-valued functions on R k \mathbb{R}^k Rk. According to the result abvove, we can formulate this problem as
min ⁡ ∑ i = 1 m ( y i − y ^ ) 2 s . t . y ^ j ≥ y ^ i + g i T ( u j − u i ) \min \sum_{i=1}^m(y_i-\hat{y})^2\\ s.t.\quad \hat{y}_j\geq \hat{y}_i+g_i^T(u_j-u_i) mini=1∑m​(yi​−y^​)2s.t.y^​j​≥y^​i​+giT​(uj​−ui​)

cvx/yalmip code

%% data
rng(29);
nos = 0.05;
u = [0:0.04:2]';
m = length(u);
y = 5*(u-1).^4+0.6*(u-1).^2+0.5*u;
v1=u>=0.4;
v2=u<=0.6;
v3 = v1.*v2;
dipvec = ((v3.*u-0.4*ones(size(v3)).^2)).*v3;
y = y+40*(dipvec-(0.4)^2*v3);

%% add perturbation
randf = nos*(rand(m, 1)-0.5);
yns = y+norm(y)*randf;

%% cvx: fitting
cvx_begin
    variables yhat(m) g(m)
    minimize(norm(yns-yhat))
    subject to
        yhat*ones(1, m)>= ones(m, 1)*yhat'+(ones(m, 1)*g').*(u*ones(1, m)-ones(m, 1)*u');
cvx_end

%% yalmip
y_yal = sdpvar(m, 1);
g = sdpvar(m, 1);
F = [y_yal*ones(1,m)>=ones(m, 1)*y_yal'+(ones(m, 1)*g').*(u*ones(1, m)-ones(m, 1)*u')];
obj = norm(yns-y_yal);
optimize(F, obj);
value(y_yal) 

%%
nobs = 1000; 
t = linspace(0, 2, nobs);
f = max(yhat(:, ones(1, nobs))+g(:, ones(1, nobs)).*(t(ones(m, 1),:)-u(:, ones(1, nobs))));

%%
figure;
hold on;
plot(u, yns, 'o');
plot(t, f, '-');
set(gca,'xtick',[],'ytick',[],'xcolor','w','ycolor','w');

figure

Penalty function approx.

The log barrier penalty function is as follows:
ϕ ( u ) = { − a 2 log ⁡ ( 1 − ( u / a ) 2 ) ∣ u ∣ < a ∞ ∣ u ∣ ≥ a \phi(u)= \begin{cases} -a^2\log(1-(u/a)^2)&|u|<a\\ \infty & |u|\geq a \end{cases} ϕ(u)={−a2log(1−(u/a)2)∞​∣u∣<a∣u∣≥a​
Comparing the e l l 1 , e l l 2 ell_1, ell_2 ell1​,ell2​ and deadzone-linear and log-barrier penalty functions for the approximation problem:
min ⁡ ϕ ( A x − b ) \min \phi(Ax-b) minϕ(Ax−b)

log barrier penalty

The log barrier penalty function puts weight very much like the l 2 l_2 l2​-norm penalty for small residuals, but puts very strong weight on residuals larger than y 1 y_1 y1​, and infinite weight on residuals larger than y 2 y_2 y2​.

%%
rng(729);
m = 100; 
n = 30;
A = randn(m, n);
b = randn(m, 1);

%% ell_1 approx.
disp('ell 1 approximation');
cvx_begin
    variable x1(n)
    minimize (norm(A*x1+b, 1))
cvx_end

%% ell_2 approx.
disp('ell 2');
x2 = -A\b;

%% deadzone
disp('deadzone penalty');
dz = 0.5;
cvx_begin
    variable xdz(n)
    minimize(sum(max(abs(A*xdz+b)-dz, 0)));
cvx_end

%% log-barrier penalty approximation
disp('log-barrier');

% parameters for Newton method & Line search
alpha = 0.01;
beta = 0.5;

% min infty norm to get starting point
cvx_begin
    variable xlb(n)
    minimize norm(A*xlb+b, Inf)
cvx_end
linf = cvx_optval;
A = A/(1.1*linf);
b = b/(1.1*linf);

for iters = 1:50
    yp=1-(A*xlb+b);
    ym=(A*xlb+b)+1;
    f = -sum(log(yp))-sum(log(ym));
    g = A'*(1./yp)-A'*(1./ym);
    H = A'*diag(1./(yp.^2)+1./(ym.^2))*A;
    v = -H\g;
    fprime = g'*v;
    ntdecr = sqrt(-fprime);
    if (ntdecr<1e-5)
        break;
    end
    
    t=1;
    newx = xlb+t*v;
    while (min(1-(A*newx+b))<0 | min(A*newx+b+1)<0)
        t = beta*t;
        newx = xlb+t*v;
    end
    newf = -sum(log(1-(A*newx+b)))-sum(log(1+(A*newx+b)));
    while (newf>f+alpha*t*fprime)
        t = beta*t;
        newx = xlb+t*v;
        newf = -sum(log(1-(A*newx+b)))-sum(log(1+(A*newx+b)));
    end
    xlb = xlb+t*v;
end

%% plot histogram of residuals
ss = max(abs([A*x1+b; A*x2+b; A*xdz+b; A*xlb+b]));
tt = -ceil(ss):0.05:ceil(ss);
[N1, hist1] = hist(A*x1+b, tt);
[N2, hist2] = hist(A*x2+b, tt);
[N3, hist3] = hist(A*xdz+b, tt);
[N4, hist4] = hist(A*xlb+b, tt);

%% 
range_max=2.0;  rr=-range_max:1e-2:range_max;

figure(1), clf, hold off
subplot(4,1,1),
bar(hist1,N1);
hold on
plot(rr, abs(rr)*40/3, '-');
ylabel('p=1')
axis([-range_max range_max 0 40]);
hold off

subplot(4,1,2),
bar(hist2,N2);
hold on;
plot(rr,2*rr.^2),
ylabel('p=2')
axis([-range_max range_max 0 11]);
hold off

subplot(4,1,3),
bar(hist3,N3);
hold on
plot(rr,30/3*max(0,abs(rr)-dz))
ylabel('Deadzone')
axis([-range_max range_max 0 25]);
hold off

subplot(4,1,4),
bar(hist4,N4);
rr_lb=linspace(-1+(1e-6),1-(1e-6),600);
hold on
plot(rr_lb, -3*log(1-rr_lb.^2),rr,2*rr.^2,'--')
axis([-range_max range_max 0 11]);
ylabel('Log barrier'),
xlabel('r')
hold off

png

Reference

Convex Optimization S.Boyd Page 352

标签:function,functions,log,CVX,%%,max,rr,ones,ui
来源: https://blog.csdn.net/qq_18822147/article/details/112761335