论文简读《Exploring Categorical Regularization for Domain Adaptive Object Detection》
作者:互联网
https://arxiv.org/pdf/2003.09152.pdf
提出类别正则化框架,主要使用多标签分类来进行实现前景物体的弱监督。
It is widely acknowledged that CNNs trained for singlelabel image classification tend to produce high responses on the local regions containing the main objects [38, 40, 39]. Analogously, CNNs trained for multi-label classification also have the weakly localization ability for the objects associated with image-level categories [35, 36].
并将图像级(Image Level)的多标签结果与实例级(Instance Level)的预测结果进行监督,挖掘目标域实例中的难样本(对实例赋予不同的损失权重)。
target_weight = []
for i in range(len(tgt_pre_label)):
label_i = tgt_pre_label[i].item()
if label_i > 0:
diff_value = torch.exp(
weight_value
* torch.abs(tgt_image_cls_feat[label_i - 1] - tgt_prob[i][label_i])
).item()
target_weight.append(diff_value)
else:
target_weight.append(1.0)
tgt_instance_loss = nn.BCELoss(
weight=torch.Tensor(target_weight).view(-1, 1).cuda()
)
标签:Exploring,Regularization,torch,weight,tgt,image,Object,label,target 来源: https://blog.csdn.net/grllery/article/details/112424951