Trie Tree 的实现
作者:互联网
Trie Tree 的实现:
- Trie [traɪ] 读音和 try 相同,它的另一些名字有:字典树,前缀树,单词查找树等。
Trie Tree的含义:
- Trie 是一颗非典型的多叉树模型,即每个结点的分支数量可能为多个。
为什么说非典型呢?因为它和一般的多叉树不一样,尤其在结点的数据结构设计上,比如一般的多叉树的结点是这样的:
struct TreeNode {
VALUETYPE value; //结点值
TreeNode* children[NUM]; //指向孩子结点
};
而 Trie 的结点是这样的(假设只包含’a’~'z’中的字符):
struct TrieNode {
bool isEnd; //该结点是否是一个串的结束
TrieNode* next[26]; //字母映射表
};
- 要想学会 Trie 就得先明白它的结点设计。我们可以看到TrieNode结点中并没有直接保存字符值的数据成员,那它是怎么保存字符的呢?
- 这时字母映射表next 的妙用就体现了,TrieNode* next[26]中保存了对当前结点而言下一个可能出现的所有字符的链接,因此我们可以通过一个父结点来预知它所有子结点的值:
for (int i = 0; i < 26; i++) {
char ch = 'a' + i;
if (parentNode->next[i] == NULL) {
说明父结点的后一个字母不可为 ch
} else {
说明父结点的后一个字母可以是 ch
}
}
-
Trie 中一般都含有大量的空链接,因此在绘制一棵单词查找树时一般会忽略空链接,同时为了方便理解我们可以画成这样:
-
接下来我们一起来实现对 Trie 的一些常用操作方法。
-
定义类 Trie:
class Trie {
private:
bool isEnd;
Trie* next[26];
public:
//方法将在下文实现...
};
- 插入:
- 描述:向 Trie 中插入一个单词 word
实现:这个操作和构建链表很像。首先从根结点的子结点开始与 word 第一个字符进行匹配,一直匹配到前缀链上没有对应的字符,这时开始不断开辟新的结点,直到插入完 word 的最后一个字符,同时还要将最后一个结点isEnd = true;,表示它是一个单词的末尾。
void insert(string word) {
Trie* node = this;
for (char c : word) {
if (node->next[c-'a'] == NULL) {
node->next[c-'a'] = new Trie();
}
node = node->next[c-'a'];
}
node->isEnd = true;
}
- 查找:
- 描述:查找 Trie 中是否存在单词 word
实现:从根结点的子结点开始,一直向下匹配即可,如果出现结点值为空就返回 false,如果匹配到了最后一个字符,那我们只需判断 node->isEnd即可。
bool search(string word) {
Trie* node = this;
for (char c : word) {
node = node->next[c - 'a'];
if (node == NULL) {
return false;
}
}
return node->isEnd;
}
- 前缀匹配:
- 描述:判断 Trie 中是或有以 prefix 为前缀的单词
实现:和 search 操作类似,只是不需要判断最后一个字符结点的isEnd,因为既然能匹配到最后一个字符,那后面一定有单词是以它为前缀的。
bool startsWith(string prefix) {
Trie* node = this;
for (char c : prefix) {
node = node->next[c-'a'];
if (node == NULL) {
return false;
}
}
return true;
}
总结
通过以上介绍和代码实现我们可以总结出 Trie 的几点性质:
-
Trie 的形状和单词的插入或删除顺序无关,也就是说对于任意给定的一组单词,Trie 的形状都是唯一的。
-
查找或插入一个长度为 L 的单词,访问 next 数组的次数最多为 L+1,和 Trie 中包含多少个单词无关。
-
Trie 的每个结点中都保留着一个字母表,这是很耗费空间的。如果 Trie 的高度为 n,字母表的大小为 m,最坏的情况是 Trie 中还不存在前缀相同的单词,那空间复杂度就为 O(mn)O(m^n)O(mn)。
最后,关于 Trie 的应用场景,记住 8 个字:一次建树,多次查询
- 完整代码:
class Trie {
private:
bool isEnd;
Trie* next[26];
public:
Trie() {
isEnd = false;
memset(next, 0, sizeof(next));
}
void insert(string word) {
Trie* node = this;
for (char c : word) {
if (node->next[c-'a'] == NULL) {
node->next[c-'a'] = new Trie();
}
node = node->next[c-'a'];
}
node->isEnd = true;
}
bool search(string word) {
Trie* node = this;
for (char c : word) {
node = node->next[c - 'a'];
if (node == NULL) {
return false;
}
}
return node->isEnd;
}
bool startsWith(string prefix) {
Trie* node = this;
for (char c : prefix) {
node = node->next[c-'a'];
if (node == NULL) {
return false;
}
}
return true;
}
};
作者:huwt
链接:https://leetcode-cn.com/problems/implement-trie-prefix-tree/solution/trie-tree-de-shi-xian-gua-he-chu-xue-zhe-by-huwt/
来源:力扣(LeetCode)
标签:node,结点,word,Trie,isEnd,Tree,next,实现 来源: https://blog.csdn.net/m0_46260686/article/details/112213681