数据可视化 - part
作者:互联网
连续变量的分布
适合又细又密的柱状图。每个取值一个柱子。
import matplotlib.pyplot as plt
import pandas as pd
rawdata = pd.read_csv(r"..\Data\train_set.csv")
X = rawdata.iloc[:, 0:-1]
def plot_attr(dataset,attr):
data = dataset[attr].value_counts()
data.sort_index(inplace=True)
plt.bar(x=data.index,height=data.values,color="#5d8ca8")
plt.xlabel(attr)
plt.ylabel("counts")
plt.show()
plot_attr(X, "age")
e.g.
属性之间的相关性
热力图首选。包含y的热力图:
from scipy.stats import pearsonr
import seaborn
import matplotlib.pyplot as plt
import pandas as pd
def draw_heatmap(dataset):
xlen = len(dataset[:,:-1].columns)
df = pd.DataFrame()
for i in range(xlen+1):
corrs = []
for j in range(xlen):
corr, p_value = pearsonr(dataset.iloc[:,j], dataset.iloc[:,i])
corrs.append(corr)
df_corr = pd.DataFrame({dataset.columns[i]: corrs})
df = pd.concat([df, df_corr], axis=1)
df.index = dataset[:,:-1].columns
for i in range(xlen):
for j in range(xlen+1):
df.iloc[i,j] = abs(df.iloc[i,j])
seaborn.heatmap(df, cmap="Reds",linewidths=1)
plt.show()
draw_heatmap(rawdata)
e.g.
roc曲线
这是从官网上抄来的例子。模型用的是logistic回归
from sklearn.linear_model import LogisticRegression
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import plot_roc_curve
from sklearn.model_selection import StratifiedKFold
lr = LogisticRegression(max_iter=1000)
def plot_roc(tprs, aucs, ax, pic_name):
ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r',
label='Chance', alpha=.8)
mean_fpr = np.linspace(0, 1, 100)
mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
std_auc = np.std(aucs)
ax.plot(mean_fpr, mean_tpr, color='b',
label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc),
lw=2, alpha=.8)
std_tpr = np.std(tprs, axis=0)
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
ax.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2,
label=r'$\pm$ 1 std. dev.')
ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05])
ax.legend(loc="lower right")
plt.savefig("../output/"+pic_name+".png")
plt.show()
def train_lr(estimator, X, Y, pic_name):
kf = StratifiedKFold(n_splits=5)
tprs = []
aucs = []
mean_fpr = np.linspace(0, 1, 100)
fig, ax = plt.subplots()
ax.set(title="ROC_Curve -- LinearRegression")
df = pd.DataFrame({"attr": X.columns})
for i,(train, test) in enumerate(kf.split(X,Y)):
estimator = estimator.fit(X.iloc[train], Y.iloc[train])
df["importance{}".format(i+1)] = estimator.coef_[0]
viz = plot_roc_curve(estimator, X.iloc[test], Y.iloc[test],
name='ROC fold {}'.format(i+1),
alpha=0.3, lw=1, ax=ax)
interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr)
interp_tpr[0] = 0.0
tprs.append(interp_tpr)
aucs.append(viz.roc_auc)
plot_roc(tprs, aucs, ax, pic_name)
df["ave"] = df.iloc[:, 1:].mean(axis=1)
df["sort_helper"] = df["ave"].abs()
df = df.sort_values(by="sort_helper", ascending=False)
return df
train_lr(lr, X, Y, "lr")
交叉验证、每一折的roc曲线叠加、显示方差;最后输出每一折的auc,保存图片
e.g.
其实excel画的图很好看。除非数据量大用python,否则用excel [真香]。
标签:plt,df,part,可视化,tpr,ax,import,数据,mean 来源: https://blog.csdn.net/Yvesx/article/details/111879725