人工智能——罗马利亚问题
作者:互联网
题目:
根据上图以Zerind为初始状态,Bucharest为目标状态实现搜索,分别以贪婪搜索(只考虑直线距离)和A_plus算法求解最短路径。 按顺序列出贪婪算法探索的扩展节点和其估价函数值,A_plus算法探索的扩展节点和其估计值。
题目解析:
1.构建罗马利亚图
2.构建到B城市的直线距离
3.实现贪婪算法
4.实现A*算法
5.对所求路径及总长度进行输出
代码:
# 罗马利亚图存储
city_graph = [['A', 'Z', 75],
['A', 'T', 118],
['Z', 'O', 71],
['O', 'S', 151],
['A', 'S', 140],
['S', 'F', 99],
['S', 'R', 80],
['R', 'P', 97],
['R', 'C', 146],
['T', 'L', 111],
['L', 'M', 70],
['M', 'D', 75],
['D', 'C', 120],
['C', 'P', 138],
['P', 'B', 101],
['F', 'B', 211],
['B', 'G', 90],
['B', 'U', 85],
['U', 'V', 142],
['V', 'I', 92],
['I', 'N', 87],
['U', 'H', 98],
['H', 'E', 86]]
# B到其他城市的直线距离
to_B_distance = {'A': 366,
'B': 0,
'C': 160,
'D': 242,
'E': 161,
'F': 176,
'G': 77,
'H': 151,
'I': 226,
'L': 244,
'M': 241,
'N': 234,
'O': 380,
'P': 100,
'R': 163,
'S': 253,
'T': 329,
'U': 80,
'V': 199,
'Z': 374}
start_city = 'Z'
end_city = 'B'
# 判断某条路是否走过
def is_visited(A_city, B_city, went_road):
for i in range(len(went_road)):
if went_road[i][0] == A_city and went_road[i][1] == B_city:
return 1
if went_road[i][0] == B_city and went_road[i][1] == A_city:
return 1
return 0
# 根据访问结点打印结果
def print_ans(ans, distance):
print("路径为:", end="")
for i in range(len(ans)):
if i != len(ans) - 1:
print(ans[i], "->", end="")
else:
print(ans[i])
print("路径长度之和为:",distance)
# 贪婪算法,每次寻找离目标城市直线距离最短的城市走
def greedy(start, end):
print("贪婪算法:")
went_road = []
ans_road = [start]
while 1:
# 查找开始结点的所有临近城市及边
start_near_city = []
for item in city_graph:
if item[0] == start:
start_near_city.append([item[1], item[2]])
if item[1] == start:
start_near_city.append([item[0], item[2]])
# 挑选到目标结点直接距离最短的城市
direct_distance = 999
for item in start_near_city:
if to_B_distance[item[0]] < direct_distance and is_visited(start, item[0], went_road) == 0:
direct_distance = to_B_distance[item[0]]
min_distance = item[1]
min_city = item[0]
# 如果找到一条直线距离最短的路且没有访问过,则选择走这条路并记录走过的这条路
if direct_distance != 999:
went_road.append([start, min_city, min_distance])
print(min_city, direct_distance)
start = min_city
ans_road.append(start)
else:
print("终点不可达!")
return 0
# 找到终点返回路径及总长度
if start == end:
ans_distance = 0
for i in range(len(went_road)):
ans_distance += went_road[i][2]
print_ans(ans_road, ans_distance)
return 1
# A*算法,每次寻找f=g+h最小的值走
def A_plus(start, end):
print("A*算法:")
went_road = []
ans_road = [start]
while 1:
# 扫描图,获取与start相连的所有边
go_to_city = []
for item in city_graph:
if item[0] == start:
go_to_city.append([item[1], item[2]])
if item[1] == start:
go_to_city.append([item[0], item[2]])
# 寻找fx最小的可达城市和距离,不能走回访问过的路
hx = 0
for j in went_road:
hx += j[2]
fx_distance = 999
for item in go_to_city:
if hx+item[1]+to_B_distance[item[0]] < fx_distance and is_visited(start, item[0], went_road) == 0:
fx_distance = hx+item[1]+to_B_distance[item[0]]
min_distance = item[1]
min_city = item[0]
# 如果找到可达的最小城市,则将其访问过的路径加入went_road
if fx_distance != 999:
went_road.append([start, min_city, min_distance])
print(min_city, fx_distance)
start = min_city
ans_road.append(start)
else:
print("终点不可达!")
return 0
# 找到终点返回路径及总长度
if start == end:
ans_distance = 0
for i in range(len(went_road)):
ans_distance += went_road[i][2]
print_ans(ans_road, ans_distance)
return 1
greedy(start_city, end_city)
A_plus(start_city, end_city)
标签:distance,利亚,city,人工智能,罗马,item,ans,start,road 来源: https://blog.csdn.net/Dedication_/article/details/111885127