其他分享
首页 > 其他分享> > 人工智能——罗马利亚问题

人工智能——罗马利亚问题

作者:互联网

题目:
在这里插入图片描述

根据上图以Zerind为初始状态,Bucharest为目标状态实现搜索,分别以贪婪搜索(只考虑直线距离)和A_plus算法求解最短路径。 按顺序列出贪婪算法探索的扩展节点和其估价函数值,A_plus算法探索的扩展节点和其估计值。

题目解析:
1.构建罗马利亚图
2.构建到B城市的直线距离
3.实现贪婪算法
4.实现A*算法
5.对所求路径及总长度进行输出

代码:

# 罗马利亚图存储
city_graph = [['A', 'Z', 75],
              ['A', 'T', 118],
              ['Z', 'O', 71],
              ['O', 'S', 151],
              ['A', 'S', 140],
              ['S', 'F', 99],
              ['S', 'R', 80],
              ['R', 'P', 97],
              ['R', 'C', 146],
              ['T', 'L', 111],
              ['L', 'M', 70],
              ['M', 'D', 75],
              ['D', 'C', 120],
              ['C', 'P', 138],
              ['P', 'B', 101],
              ['F', 'B', 211],
              ['B', 'G', 90],
              ['B', 'U', 85],
              ['U', 'V', 142],
              ['V', 'I', 92],
              ['I', 'N', 87],
              ['U', 'H', 98],
              ['H', 'E', 86]]
# B到其他城市的直线距离
to_B_distance = {'A': 366,
                 'B': 0,
                 'C': 160,
                 'D': 242,
                 'E': 161,
                 'F': 176,
                 'G': 77,
                 'H': 151,
                 'I': 226,
                 'L': 244,
                 'M': 241,
                 'N': 234,
                 'O': 380,
                 'P': 100,
                 'R': 163,
                 'S': 253,
                 'T': 329,
                 'U': 80,
                 'V': 199,
                 'Z': 374}
start_city = 'Z'
end_city = 'B'
# 判断某条路是否走过
def is_visited(A_city, B_city, went_road):
    for i in range(len(went_road)):
        if went_road[i][0] == A_city and went_road[i][1] == B_city:
            return 1
        if went_road[i][0] == B_city and went_road[i][1] == A_city:
            return 1
    return 0
# 根据访问结点打印结果
def print_ans(ans, distance):
    print("路径为:", end="")
    for i in range(len(ans)):
        if i != len(ans) - 1:
            print(ans[i], "->", end="")
        else:
            print(ans[i])
    print("路径长度之和为:",distance)
# 贪婪算法,每次寻找离目标城市直线距离最短的城市走
def greedy(start, end):
    print("贪婪算法:")
    went_road = []
    ans_road = [start]
    while 1:
        # 查找开始结点的所有临近城市及边
        start_near_city = []
        for item in city_graph:
            if item[0] == start:
                start_near_city.append([item[1], item[2]])
            if item[1] == start:
                start_near_city.append([item[0], item[2]])
        # 挑选到目标结点直接距离最短的城市
        direct_distance = 999
        for item in start_near_city:
            if to_B_distance[item[0]] < direct_distance and is_visited(start, item[0], went_road) == 0:
                direct_distance = to_B_distance[item[0]]
                min_distance = item[1]
                min_city = item[0]
        # 如果找到一条直线距离最短的路且没有访问过,则选择走这条路并记录走过的这条路
        if direct_distance != 999:
            went_road.append([start, min_city, min_distance])
            print(min_city, direct_distance)
            start = min_city
            ans_road.append(start)
        else:
            print("终点不可达!")
            return 0
        # 找到终点返回路径及总长度
        if start == end:
            ans_distance = 0
            for i in range(len(went_road)):
                ans_distance += went_road[i][2]
            print_ans(ans_road, ans_distance)
            return 1
# A*算法,每次寻找f=g+h最小的值走
def A_plus(start, end):
    print("A*算法:")
    went_road = []
    ans_road = [start]
    while 1:
        # 扫描图,获取与start相连的所有边
        go_to_city = []
        for item in city_graph:
            if item[0] == start:
                go_to_city.append([item[1], item[2]])
            if item[1] == start:
                go_to_city.append([item[0], item[2]])

        # 寻找fx最小的可达城市和距离,不能走回访问过的路
        hx = 0
        for j in went_road:
            hx += j[2]
        fx_distance = 999
        for item in go_to_city:
            if hx+item[1]+to_B_distance[item[0]] < fx_distance and is_visited(start, item[0], went_road) == 0:
                fx_distance = hx+item[1]+to_B_distance[item[0]]
                min_distance = item[1]
                min_city = item[0]
        # 如果找到可达的最小城市,则将其访问过的路径加入went_road
        if fx_distance != 999:
            went_road.append([start, min_city, min_distance])
            print(min_city, fx_distance)
            start = min_city
            ans_road.append(start)
        else:
            print("终点不可达!")
            return 0
        # 找到终点返回路径及总长度
        if start == end:
            ans_distance = 0
            for i in range(len(went_road)):
                ans_distance += went_road[i][2]
            print_ans(ans_road, ans_distance)
            return 1

greedy(start_city, end_city)
A_plus(start_city, end_city)

标签:distance,利亚,city,人工智能,罗马,item,ans,start,road
来源: https://blog.csdn.net/Dedication_/article/details/111885127