其他分享
首页 > 其他分享> > 用 OpenCV 去除图片中的水印,骚操作!

用 OpenCV 去除图片中的水印,骚操作!

作者:互联网

参考连接:https://stackoverflow.com/questions/32125281/removing-watermark-out-of-an-image-using-opencv

好久不见,大家好啊,最近太忙了,搞得好久没更原创文了(说到底还是懒,),

这两天在 Stackoverflow 上面看到了一个有趣的案例,是关于OpenCV 的一个讨论,讨论的主题就是如何用 OpenCV 来去除下面图片中的水印,原图如下;

shuiyin.jpg

题主想把纸张中的 黑色圆环去掉只留下背景,因此一些感兴趣的 CV 爱好者在下面写上自己的想法、并贴上自己的解决代码

看到关于这个主题的答案后,只能感叹真正的大佬,都是从实践场景出发来解决问题,

因为篇幅有限,在文章中只贴上得票最高的两个问答思路及代码, 让我们感受下他们思路的巧妙之处!

作者:Joel G

这老哥的思路,总体为五部分

以下是在自己机子上跑出来的结果,从左到右依次对应上面的 A,C,D,E;效果如下

threshold1.jpg

这个方法整体大概思想,先提取图像中圆环部分区域,对圆环内的文字做阈值分割进行提取,最后将提取到的图像区域在初始图像中进行替换

这里答主主要用到了三种重要算法:图像位运算(和、或)阈值分割霍夫圆检测

下面就是这个思路的代码部分,原答主用的是 C++ ,因为我做的是 Python 教程,就用 Python 转换了一下

import cv2
import numpy as np

if __name__ =='__main__':
    img_path = "F:/Data/Ceshi1/shuiyin.jpg"

    img1 = cv2.imread(img_path)
    cv2.namedWindow('img1',cv2.WINDOW_FREERATIO)
    cv2.imshow('img1',img1)

    # 转化为 灰度图
    gray = cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)
    # 创建一个白画布
    ellipse_img = np.full((img1.shape[0],img1.shape[1],3),0,dtype = np.uint8)
    print(ellipse_img.shape,ellipse_img[0][0])
    gray = cv2.GaussianBlur(gray,(5,5),0) # 高斯处理
    # 应用霍夫圆检测,检测出所有圆
    circles = cv2.HoughCircles(gray,cv2.HOUGH_GRADIENT,1,gray.shape[0]/8,100,100,100,0)


    # 找到最大的圆
    measure = 0.0
    x = 0.0
    y = 0.0
    for circle in (circles[0]):
        if circle[2] > measure:
            measure = circle[2]
            x = circle[0]
            y = circle[1]

    # 绘制圆
    cv2.circle(img1,(x,y),3,(0,255,0),-1,8,0)
    cv2.circle(img1,(x,y),int(measure),(0,255,0),2,8,0)
    # 绘制相同大小的圆
    ellipse_img =  cv2.ellipse(ellipse_img,(x,y),(int(measure),int(measure)),0,0,360,(255,255,255),-1,8)
    print(f'center x is {x} ,y is {y}, radius is {measure}')
    ellipse_img = cv2.cvtColor(ellipse_img,cv2.COLOR_BGR2GRAY)

    result = cv2.bitwise_and(gray,ellipse_img)


    cv2.namedWindow('bitwise and',cv2.WINDOW_FREERATIO)
    cv2.imshow('bitwise and',result)

    # 估计圆图像像素强度
    x = result[int(x+30)][int(y)]
    print(f'intensity is  {x}')


    # 阈值分割
    _,ellipse_img = cv2.threshold(result,int(x) - 10,250,cv2.THRESH_BINARY)
    # print('ellipse_img shape is {}'.format(ellipse_img.shape))
    cv2.namedWindow('threshold',cv2.WINDOW_FREERATIO)
    cv2.imshow('threshold',ellipse_img)

    # 使用 bitwise_or 方法
    print('shape ------------\n')
    print(ellipse_img.shape,gray.shape)
    res = cv2.bitwise_or(gray,ellipse_img)

    cv2.namedWindow('bitwise_or',cv2.WINDOW_FREERATIO)
    cv2.imshow('bitwise_or',res)

    cv2.waitKey(0)

最终结果预览比对

reslut_1.jpg

上面是第一种实现方法,这种方法思路主要用到阈值分割,从最终结果来看确实去掉了水印,但还是有一定的瑕疵:

下面介绍第二种思路,与第一种有相似的地方,也用到了阈值分割、图像像素位运算 相关算法,但同却又有自己的独特地方,从客观角度分析来看,这种方法的最终结果会更好一点

作者:dhanushka

思路主要分为四部分

Snipaste_2020-12-11_21-17-22.jpg

Snipaste_2020-12-11_21-17-53.jpg

Snipaste_2020-12-11_21-18-00.jpg

Snipaste_2020-12-11_21-18-11.jpg

代码贴在下方

import cv2
import numpy as np

if __name__ =='__main__':
    img_path = "F:/Data/Ceshi1/shuiyin.jpg"
    im = cv2.imread(img_path)

    gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

    background = gray.copy()
    for i in range(1,5):
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(2*i+1,2*i+1))
        # print('kernel size is ',kernel)
        background = cv2.morphologyEx(background,cv2.MORPH_CLOSE,kernel)
        background = cv2.morphologyEx(background,cv2.MORPH_CLOSE,kernel)

    diff = background - gray # 计算差距

    cv2.namedWindow('diff',cv2.WINDOW_FREERATIO) # 获取图像中前景背景之差
    cv2.imshow('diff',background)
    # 阈值分割获取黑色字体
    _,bw = cv2.threshold(diff,0,255,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
    # 阈值分割获取黑色区域
    cv2.namedWindow('bw_before', cv2.WINDOW_FREERATIO)
    cv2.imshow('bw_before', bw)


    _,dark = cv2.threshold(background,0,255,cv2.THRESH_BINARY_INV|cv2.THRESH_OTSU)

    darkpix = cv2.countNonZero(dark)# 获取 dark非0d图像像素个数
    darkpix = [0]*darkpix
    index = 0
    cv2.namedWindow('gray', cv2.WINDOW_FREERATIO)
    cv2.imshow('gray', gray)



    for r in range(dark.shape[0]):
        for c in range(dark.shape[1]):
            if(dark[r][c]):
                darkpix[index]  = gray[r][c]
                index = index +1

    # 阈值分割 dark 区域 因此我们在里面得到更深的像素
    darkpix = np.array(darkpix)
    _,darkpix = cv2.threshold(darkpix,0,255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)

    cv2.namedWindow('darkpix', cv2.WINDOW_FREERATIO)
    cv2.imshow('darkpix', darkpix)

    # 把 取到的像素粘贴到 其渠道的 darker pixels

    cv2.namedWindow('dark',cv2.WINDOW_FREERATIO)
    cv2.imshow('dark',dark)

    index = 0
    for r in range(dark.shape[0]):
        for c in range(dark.shape[1]):
            if (dark[r][c]):
                bw[r][c] =  darkpix[index]
                index = index +1

    cv2.namedWindow('bw',cv2.WINDOW_FREERATIO)
    cv2.imshow('bw',bw)
    cv2.waitKey(0)

效果预览对比

Snipaste_2020-12-12_17-04-44.jpg

相对第一种方法,第二种方法实用性更强一点,无论图像前景水印为什么形状的,这种方法都可适用(水印区域与其他背景像素强度差别大,且水印区域是连接在一起的),

如果考虑到商用途径,只用 OpenCV 来解决复杂场景的图片水印问题,是不现实的,还需人工的干涉;但不现实并不代表它没有用,对于前后像素值较大、简单场景的水印,OpenCV 是完全可行的,若是再加上一个批量操作,变得更可了,大大解放我们的双手!

并且这两种思路中用到的的一些方法,是值得我们借鉴的,比如 图像像素或与和操作、形态学过滤、霍夫圆检测等技术,可借助于这些方法应用到其它场景,例如提取图像中圆形区域、行人路上斑马线检测、去除不规则图像连接区域等。

好了,以上就是本篇文章的全部内容了,如果觉得不错,请不要吝啬你的双手,点赞、转发、留言,感谢三连!

标签:gray,img,去除,cv2,水印,OpenCV,shape,图像,ellipse
来源: https://www.cnblogs.com/zeroing0/p/14131552.html