中国大学排名网站
作者:互联网
# -*- coding: utf-8 -*- import bs4 import requests from bs4 import BeautifulSoup import pandas as pd import matplotlib.pyplot as plt def getHTMLText(url): try: res = requests.get(url,timeout = 30) res.raise_for_status() res.encoding = res.apparent_encoding return res.text except: return "访问未成功" def fillUnivList(ulist, html): # 将一个html页面放入一个列表 soup = BeautifulSoup(html, "html.parser") # 每个<tr>包含一所大学的所有信息 # 所有<tr>信息包在<tbody>中 for tr in soup.find('tbody').children: if isinstance(tr, bs4.element.Tag): # 过滤掉非标签信息,以取出包含在<tr>标签中的bs4类型的Tag标签 tds = tr('td') # 等价于tr.find_all('td'),在tr标签中找td标签内容 # print(tds) ulist.append([tds[0].string, tds[1].string, tds[3].string, tds[2].string]) # td[0],[1],[3],[2],分别对应每组td信息中的排名,学校名称,得分,区域。将这些信息从摘取出来 print(ulist) return ulist def writedata(ulist,file): where_list = [] dict = {} df = pd.DataFrame(ulist,columns=['排名','学校名称','得分','区域']) #list转dataframe df.to_csv(file,',',index=False,encoding="gbk") print("写入完成!") for i in range(100): if df.iloc[i,-1] in where_list: dict[df.iloc[i,-1]] += 1 else: where_list.append(df.iloc[i,-1]) dict[df.iloc[i,-1]] = 1 print(dict) return dict if __name__ == '__main__': uinfo = [] url = "http://www.zuihaodaxue.cn/zuihaodaxuepaiming2016.html" soup = getHTMLText(url) ulist = fillUnivList(uinfo,soup) file = "D:\\tt.csv" dict = writedata(ulist,file)
标签:网站,tr,tds,df,dict,排名,ulist,中国大学,td 来源: https://www.cnblogs.com/91jjk/p/14130611.html