苏州大学2020年高等代数考研试题参考解答
作者:互联网
1、 (25 分) 已知 是欧氏空间 中的一组标准正交基, @跟锦数学微信公众号
是由 生成的子空间, 求 和 的一组标准正交基. 参考解答
2、 (25 分) 已知 @跟锦数学微信公众号
(1)、 求 参考解答
的初等因子, 不变因子, Jordan 标准形; (2)、 求可逆矩阵 , 使得 为 Jordan 标准形.3、 (20 分) 已知
是数域 上的 维线性空间 上的线性变换. (1)、 证明: 若存在 , 使得 @跟锦数学微信公众号线性无关, 则 参考解答
的特征多项式和最小多项式相同; (2)、 试问 (1) 的逆命题是否成立? 并说明理由.4、 (20 分) 已知实数域上欧氏空间
的对称变换 在一组标准正交基 下的矩阵为 . 证明: (1)、 存在实数 , 使得 为正定矩阵; (2)、 若 是首一 次实系数多项式, 且无实根, 则对等任意的 , 都有 @跟锦数学微信公众号5、 (20 分)
是数域 上 维线性空间 的线性变换. 证明: (1)、 当且仅当 ; (2)、 存在 , 使得 @跟锦数学微信公众号6、 (20 分) 若
阶方阵 满足 @跟锦数学微信公众号证明: (1)、 参考解答
; (2)、 相似于对角阵; (3)、 若 有特征值 , 且 是 的属于特征值 的特征向量, 则方程组 无解.7、 (20 分) 参考解答
阶实矩阵 的特征值全为实数当且仅当存在正交矩阵 , 使得 是上三角矩阵.标签:20,参考,微信,矩阵,公众,2020,苏州大学,考研,解答 来源: https://www.cnblogs.com/zhangzujin/p/14111872.html