Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features【论文记录】
作者:互联网
交叉特征有很好的效果,但人工组合发现有意义的特征很难
深度学习可以不用人工挖掘特征,还可以挖掘到专家都没找到的高阶特征
特色在于残差单元的使用,特征的表示
1 摘要
-
automatically combines features to produce superior models
自动组合特征以产生出色的模型 -
achieve superior results with only a sub-set of the features used in the production models.
仅使用生产模型中使用的特征的子集即可获得出色的结果。
2 Sponsored Search
- Sponsored search is responsible for showing ads alongside organic search results
Sponsored Search 负责与自然搜索结果一起展示广告
概念 | 含义 |
---|---|
Query | 用户在搜索框中输入的文本字符串 |
Keyword | 广告商指定的与产品相关的文本字符串,以匹配用户查询 |
Title | 广告客户指定的赞助广告标题,以吸引用户的注意 |
Landing page(登录页面) | 当用户点击相应的广告时,用户访问的产品网站 |
Match type | 提供给广告客户的选项,可以让用户查询关键字与关键字的匹配程度如何,通常为以下四种之一:精确,词组,广泛和上下文 |
Campaign | 一组具有相同设置(如预算和位置定位)的广告,通常用于将产品分类 |
Impression(展品) | 向用户显示的广告实例。通常会在运行时记录展品以及其他可用信息 |
Click | 用户是否点击了展品的指标。 通常会在运行时记录一次单击以及其他可用信息 |
Click through rate | 总点击次数超过总展示次数 |
Click Prediction | 平台的关键模型,可预测用户针对给定查询点击给定广告的可能性 |
3 特征表示
-
Simply converting campaign ids into a onehot vector would significantly increase the size of the model.
只将广告系列 ID 转化为 onehot 向量,就会大大增加模型的大小-
One solution is to use a pair of companion features as exemplified in the table, where CampaignID is a one-hot representation consisting only of the top 10, 000 campaigns with the highest number of clicks.
一种解决方案是使用表中示例的一对广告特征,CampaignID 是只包含点击次数最高的前 10,000 个广告的 onehot 表示
-
Other campaigns are covered by CampaignIDCount, which is a numerical feature that stores per campaign statistics such as click through rate. Such features will be referred as a counting feature in the following discussions
其他广告由 CampaignIDCount 包含,CampaignIDCount 是一个数字特征,可存储每个广告的统计信息,例如点击率。 在以下讨论中,此类功能将被称为计数特征。
-
-
Deep Crossing avoids using combinatorial features. It works with both sparse and dense individual features
Deep Crossing 不使用特征组合。 它可以同时处理稀疏和密集的个体特征
4 模型结构
- The objective function is log loss but can be easily customized to soft-max or other functions
目标函数是 log 损失函数,但也能定义为 softmax 或其他函数
logloss = − 1 N ∑ i = 1 N ( y i log ( p i ) + ( 1 − y i ) log ( 1 − p i ) ) (1) \text { logloss }=-\frac{1}{N} \sum_{i=1}^{N}\left(y_{i} \log \left(p_{i}\right)+\left(1-y_{i}\right) \log \left(1-p_{i}\right)\right) \tag{1} logloss =−N1i=1∑N(yilog(pi)+(1−yi)log(1−pi))(1) p i p_i pi 是 Scoring 层一个节点的输出
4.1 Embedding and Stacking Layers
-
The embedding layer consists of a single layer of a neural network, with the general form
Embedding 由神经网络的单层组成,一般形式为
X j O = max ( 0 , W j X j I + b j ) (2) X_{j}^{O}=\max \left(\mathbf{0}, \mathbf{W}_{j} X_{j}^{I}+\mathbf{b}_{j}\right) \tag{2} XjO=max(0,WjXjI+bj)(2) 其中,
X j I X^I_j XjI 是 n j n_j nj 维的输入特征,
W j W_j Wj 是 m j × n j m_j \times n_j mj×nj 矩阵
b b b 是 n j n_j nj 维的
当 m j < n j m_j \lt n_j mj<nj,embedding 就可以减小输入特征的维度
这个运算参考于 ReLU -
Note that both { W j W_j Wj} and { b j b_j bj} are the parameters of the network, and will be optimized together with the other parameters in the network.
W j W_j Wj 和 b j b_j bj 会和网络中的其他参数一起进行优化,这与 word2vec 不同
4.2 Residual Layers
源于 Residual Net 的 Residual Unit,进行了修改
-
The unique property of Residual Unit is to add back the original input feature after passing it through two layers of ReLU transformations
残差单元的独特属性是在经过两层 ReLU 转换后,将原始输入特征添加回去
X O = F ( X I , { W 0 , W 1 } , { b 0 , b 1 } ) + X I (3) X^{O}=\mathcal{F}\left(X^{I},\left\{\mathbf{W}_{0}, \mathbf{W}_{1}\right\},\left\{\mathbf{b}_{0}, \mathbf{b}_{1}\right\}\right)+X^{I} \tag{3} XO=F(XI,{W0,W1},{b0,b1})+XI(3) F ( ⋅ ) \mathcal{F}(\cdot) F(⋅) 表示拟合 X O − X I X^O - X^I XO−XI 的残差 -
the authors believed that fitting residuals has a numerical advantage. While the actual reason why Residual Net could go as deep as 152 layers with high performance is subject to more investigations, Deep Crossing did exhibit a few properties that might benefit from the Residual Units.
在这篇论文中1作者认为拟合残差具有数值优势。 尽管“Residual Net”可以深入到 152 层还能有很高性能的实际原因尚待进一步研究,但“Deep Crossing”确实显示出一些可能会受益于“残差单元”的属性。
-
Deep Crossing was applied to a wide variety of tasks. It was also applied to training data with large di↵erences in sample sizes. It’s likely that the Residual Units are implicitly performing some kind of regularization that leads to such stability.
Deep Crossing 被应用于各种各样的任务。它也适用于样本数量差异较大的训练数据。残差单元可能会隐式执行某种正则化操作,从而导致这种稳定性。
5 总结
- Deep Crossing demonstrated that with the recent advance in deep learning algorithms, modeling language, and GPU-based infrastructure, a nearly dummy solution exists for complex modeling tasks at large scale
Deep Crossing 证明了随着深度学习算法,建模语言和基于GPU的基础架构的最新发展,针对大型复杂建模任务存在着几乎是虚拟的解决方案
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385,2015. ↩︎
标签:log,Web,Scale,Features,Residual,Deep,广告,Crossing,left 来源: https://blog.csdn.net/qq_40860934/article/details/110451599