kaggle——Bag of Words Meets Bags of Popcorn(IMDB电影评论情感分类实践)
作者:互联网
kaggle链接:https://www.kaggle.com/c/word2vec-nlp-tutorial/overview
简介:给出 50,000 IMDB movie reviews,进行0和1情感二分类
给出两段代码,都值得借鉴:
第一个是,lstm实现的pytorch版本,调参以后从0.90569提升到了0.95718(主要是优化器用adam,学习率用0.001,句子长度设置为200),排名大概是100/577,前17%
其实还可以进一步提高
未来的建议:结合word2vec,试一试xgboost和bilstm(可以参考kaggle上其他人的解答)
第二个是,利用github开源的bert模型进行训练,(但是没有用到官网给的语料库unlabeledTrainData.tsv, 第一个代码的gensim中的word2vec用到了),二分类情感分类模型,
虽然用到了预训练模型,但是效果还是没有那么好,最后效果大概是0.90896.
可能原因分析:可能是超参数没有调好(bert输入参数没有完全理解透彻,后续还要跟进,另外可以研究bert的loss的可视化输出,网上有修改的源码),也可能是没有用上语料库的原因,总之效果并不理想
综上,两段代码都有需要改进的地方,未来值得深究(另外备注一点:bert还可以做多标签情感分类,多标签情感分类属于另一主题,留给未来研究,kaggle相关比赛建toxic comment:https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge )
附录: kaggle——情感分类专辑:https://zhuanlan.zhihu.com/p/70361361
标签:Bags,bert,分类,kaggle,Meets,情感,https,com 来源: https://www.cnblogs.com/qiezi-online/p/14051945.html