334. Increasing Triplet Subsequence(也可以使用dp动态规划)
作者:互联网
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.
Formally the function should:
Return true if there exists i, j, k
such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.
Note: Your algorithm should run in O(n) time complexity and O(1) space complexity.
Example 1:
Input: [1,2,3,4,5] Output: true
Example 2:
Input: [5,4,3,2,1] Output: false
class Solution { public: //直接找出这个最长公共子串 //用一个数组保存最长公共子串, //遍历原始数组,若nums[i] 小于最长公共子串数组开头数,则替换 //若nums[i]大于最长公共子串数组结尾数,则加入数组 //若nums[i]在最长公共子串数组中间位置,那么找到有序数组中第一个大于nums[i]的数,替换。 bool increasingTriplet(vector<int>& nums) { if(nums.size()<3) return false; //存放最长递增子序列。 vector<int> dp; dp.push_back(nums[0]); for(int i=1;i<nums.size();i++){ if(nums[i] > dp.back()){ dp.push_back(nums[i]); }else if(nums[i] < dp[0]){ dp[0] = nums[i]; }else{ //二分查找。查找所有大于key的元素中最左的元素。 int left = 0,right=dp.size()-1,target=nums[i]; while(left<=right){ int mid = left+(right-left)/2; if(dp[mid] < target) left=mid+1; else right=mid-1; } dp[left]=nums[i]; } } return dp.size() >= 3 ? true:false; } };
法二:
class Solution { public: //维护更新最小值和次小值。 bool increasingTriplet(vector<int>& nums) { if(nums.size()<3) return false; int smallest = INT_MAX; int smaller = INT_MAX; for(int i=0;i<nums.size();i++){ if(nums[i] <= smallest) smallest = nums[i]; else if(nums[i] <= smaller) smaller = nums[i]; else return true; } return false; } };
标签:子串,arr,Triplet,nums,334,Subsequence,数组,最长,dp 来源: https://www.cnblogs.com/wsw-seu/p/13934395.html