其他分享
首页 > 其他分享> > LeetCode Notes_面试题 01.07. 旋转矩阵

LeetCode Notes_面试题 01.07. 旋转矩阵

作者:互联网

LeetCode Notes_面试题 01.07. 旋转矩阵

LeetCode

Contents

题目

给你一幅由 N × N 矩阵表示的图像,其中每个像素的大小为 4 字节。请你设计一种算法,将图像旋转 90 度。
不占用额外内存空间能否做到?
示例 1:

给定 matrix = 
[
  [1,2,3],
  [4,5,6],
  [7,8,9]
],

原地旋转输入矩阵,使其变为:
[
  [7,4,1],
  [8,5,2],
  [9,6,3]
]

示例 2:

给定 matrix =
[
  [ 5, 1, 9,11],
  [ 2, 4, 8,10],
  [13, 3, 6, 7],
  [15,14,12,16]
], 

原地旋转输入矩阵,使其变为:
[
  [15,13, 2, 5],
  [14, 3, 4, 1],
  [12, 6, 8, 9],
  [16, 7,10,11]
]

解答

方法1:使用额外空间

创建一个新的矩阵newMatrix,按照旋转90度的方式把原矩阵的每个元素放入新矩阵。
在纸上写出新旧矩阵元素坐标,不难发现坐标的对应关系,

newMatrix[j][n - 1 - i] = matrix[i][j];

注意,本题给出的函数签名没有返回值,所以还需要将newMatrix赋值回原矩阵。

class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        int[][] newMatrix = new int[n][n];
        for(int i = 0;i <= n - 1;i++){
            for(int j = 0;j <= n - 1;j++){
                newMatrix[j][n - 1 - i] = matrix[i][j];
            }
        }
        for(int i = 0;i <= n - 1;i++){
            for(int j = 0;j <= n - 1;j++){
                matrix[i][j] = newMatrix[i][j];
            }
        } 
    }
}

复杂度分析

时间复杂度:O(n2)
空间复杂度:O(n2)

方法2:先转置,再对每行中点翻转

分为两个步骤,代码看上去会很清晰。

  1. 首先沿着左上-右下对角线进行翻转,其实就相当于矩阵的转置。转置过后,变成了这样:
    [1,4,7]             [7,4,1]
    [2,5,8] --------->  [2,5,8](观察发现,还需要左右对称翻转)
    [3,6,9]             [3,6,9]
  1. 观察转置之后的矩阵和目标矩阵的差距,如上,可以发现我们再进行一次左右对称的翻转,就可以得到目标矩阵了。
    [7,4,1]
    [8,5,2]
    [9,6,3]
class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        for(int i = 0;i <= n - 1;i++){
            for(int j = i + 1;j <= n - 1;j++){
                int temp = matrix[i][j];
                matrix[i][j] = matrix[j][i];
                matrix[j][i] = temp;
            }
        }
        //位运算右移一位,其实就是除以2的意思
        int mid = n >> 1;
        for(int i = 0;i <= n - 1;i++){
            //这里的循环边界条件,一定要在纸上举例子验证,很容易搞错
            for(int j = 0;j <= mid - 1;j++){
                int temp = matrix[i][j];
                matrix[i][j] = matrix[i][n - 1 - j];
                matrix[i][n - 1 - j] = temp;
            }
        }
    }
}

复杂度分析

时间复杂度:O(n2)
空间复杂度:O(1),没有借助额外变量

方法3: 矩阵分为四块并进行顺时针旋转

这个方法比较抽象,但是理解之后,代码写起来很简单。以下有一个很清晰的图解。

  1. 首先我们可以将整个矩阵分解为四块,即左上,右上,左下,右下。我们发现其实旋转90度时,这四块当中的对应元素(也就是图中颜色相同的元素)进行了一次旋转。
  2. 然后我们可以观察出这些对应元素之间的坐标关系


需要注意的是矩阵行列数为奇数的情况,左上角区域并不是整个矩阵的四分之一。


class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        for(int i = 0;i < n / 2;i++){
            for(int j = 0;j < (n + 1) / 2;j++){
                int temp = matrix[i][j];
                matrix[i][j] = matrix[n - 1 - j][i];
                matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j];
                matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i];
                matrix[j][n - 1 - i] = temp;
            }
        }
    }
}

复杂度分析

时间复杂度:O(n2)
空间复杂度:O(1),没有借助额外变量

标签:面试题,matrix,int,Notes,矩阵,旋转,转置,01.07,复杂度
来源: https://www.cnblogs.com/Howfars/p/13758051.html