其他分享
首页 > 其他分享> > 魔改CNN对cifar-10分类

魔改CNN对cifar-10分类

作者:互联网

  本来打算利用AlexNet对cifar-10进行分类,但是因为这个数据集里面的图片是32*32的,要是网络结构完全按照AlexNet的思路就可能卷没了。因此我一开始稍微调整了一下AlexNet的网络层参数,然后跑了一下,虽然利用了GPU加速,每运行一次迭代仍然需要将近5分钟,在迭代了20次后预测准确率还在60%徘徊。

  因此我更改了网络结构,由于图片像素值较小,局部特征可能并没有那么多,因此我感觉较深的卷积可能不太利于特征的提取,因此我将卷积核的数目减少了很多,并只设置了两个卷积池化层。

  这一部分的pytorch代码如下:

  

            nn.Conv2d(in_channels=3, out_channels=64, kernel_size=5, stride=1, padding=2, bias=False),
            # (32-5+4)/1+1=32
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0),  # (32-3)/2+1=15
            nn.Conv2d(in_channels=64, out_channels=64, kernel_size=5, stride=1, padding=2, bias=False),
            # (15-5+4)/1+1=15
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0),  # (15-3)/2+1=7

  在用两层卷积池化进行特征提取之后,就可以利用全连接层进行分类了,这一部分的参数我根据上一部分得到的输出结果大小也做了调整。

        self.feature_classify = torch.nn.Sequential(
            nn.Dropout(p=0.25),
            nn.Linear(in_features=64* 7 * 7, out_features=384),
            nn.Dropout(p=0.25),
            nn.Linear(in_features=384, out_features=192),
            nn.Linear(in_features=192, out_features=10),
        )

  利用魔改的CNN进行分类后预测结果如下:

采用了GPU加速
Files already downloaded and verified
Files already downloaded and verified
epoch:1,acc:0.2820,loss:768.9158
epoch:1,test_acc:0.3766,test_loss:135.6541
epoch:2,acc:0.4303,loss:620.1400
epoch:2,test_acc:0.4483,test_loss:122.1497
epoch:3,acc:0.4923,loss:555.9510
epoch:3,test_acc:0.5335,test_loss:105.0851
epoch:4,acc:0.5407,loss:509.0777
epoch:4,test_acc:0.5692,test_loss:95.4788
epoch:5,acc:0.5817,loss:466.2306
epoch:5,test_acc:0.5987,test_loss:90.4952
epoch:6,acc:0.6119,loss:435.5047
epoch:6,test_acc:0.6311,test_loss:84.1474
epoch:7,acc:0.6415,loss:406.7112
epoch:7,test_acc:0.6599,test_loss:77.7228
epoch:8,acc:0.6604,loss:383.8425
epoch:8,test_acc:0.6669,test_loss:75.7800
epoch:9,acc:0.6766,loss:365.9761
epoch:9,test_acc:0.6894,test_loss:72.6862
epoch:10,acc:0.6944,loss:347.8030
epoch:10,test_acc:0.7098,test_loss:67.5863
epoch:11,acc:0.7059,loss:335.6827
epoch:11,test_acc:0.7047,test_loss:68.2921
epoch:12,acc:0.7164,loss:323.1924
epoch:12,test_acc:0.7129,test_loss:67.2043
epoch:13,acc:0.7281,loss:310.9101
epoch:13,test_acc:0.7149,test_loss:68.1935
epoch:14,acc:0.7335,loss:304.4421
epoch:14,test_acc:0.7292,test_loss:63.6596
epoch:15,acc:0.7413,loss:294.5465
epoch:15,test_acc:0.7269,test_loss:64.1225
epoch:16,acc:0.7502,loss:286.1364
epoch:16,test_acc:0.7096,test_loss:66.8780
epoch:17,acc:0.7562,loss:279.5722
epoch:17,test_acc:0.7455,test_loss:60.0752
epoch:18,acc:0.7588,loss:274.7319
epoch:18,test_acc:0.7461,test_loss:59.7839
epoch:19,acc:0.7670,loss:265.4509
epoch:19,test_acc:0.7527,test_loss:57.7525
epoch:20,acc:0.7703,loss:261.4555
epoch:20,test_acc:0.7368,test_loss:62.2542
epoch:21,acc:0.7752,loss:255.8207
epoch:21,test_acc:0.7434,test_loss:59.8888
epoch:22,acc:0.7802,loss:250.5966
epoch:22,test_acc:0.7469,test_loss:58.5952
epoch:23,acc:0.7857,loss:245.0714
epoch:23,test_acc:0.7461,test_loss:60.0502
epoch:24,acc:0.7886,loss:240.5701
epoch:24,test_acc:0.7574,test_loss:57.4417
epoch:25,acc:0.7923,loss:235.4422
epoch:25,test_acc:0.7467,test_loss:59.2719

  该项目源代码如下:

import torch
import torch.nn.functional as  F
import matplotlib.pyplot as plt
from torch import nn
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

EPOCH = 25
if torch.cuda.is_available():
    device = torch.device("cuda")
    print("采用了GPU加速")
else:
    device = torch.device("cpu")
    print("GPU无法正常使用")

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

train_set = datasets.CIFAR10('../pytorch_', train=True, download=True, transform=transform)
test_set = datasets.CIFAR10('../pytorch_', train=False, download=True, transform=transform)

train_data = DataLoader(train_set, batch_size=128, shuffle=True)
# torch.Size([128])   :y
# torch.Size([128, 3, 32, 32])    :x
test_data = DataLoader(test_set, batch_size=128, shuffle=True)


class AlexNet(torch.nn.Module):
    def __init__(self):
        super(AlexNet, self).__init__()
        self.feature_extraction = torch.nn.Sequential(
            # nn.Conv2d(in_channels=3, out_channels=96, kernel_size=3, stride=2, padding=2, bias=False),
            #             # # (32-3+4)/2+1=17
            #             # nn.ReLU(inplace=True),
            #             # nn.MaxPool2d(kernel_size=3, stride=1, padding=0),  # (17-3)/1+1=15
            #             # nn.Conv2d(in_channels=96, out_channels=192, kernel_size=5, stride=1, padding=2, bias=False),
            #             # # (15-5+4)/1+1=15
            #             # nn.ReLU(inplace=True),
            #             # nn.MaxPool2d(kernel_size=3, stride=1, padding=0),  # (15-3)/1+1=13
            #             # nn.Conv2d(in_channels=192, out_channels=384, kernel_size=3, stride=1, padding=1, bias=False),
            #             # # (13-3+2)/1+1=13
            #             # nn.ReLU(inplace=True),
            #             # nn.Conv2d(in_channels=384, out_channels=256, kernel_size=3, stride=1, padding=1, bias=False),
            #             # # (13-3+2)/1+1=13
            #             # nn.ReLU(inplace=True),
            #             # nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1, bias=False),
            #             # # (13-3+2)/1+1=13
            #             # nn.ReLU(inplace=True),
            #             # nn.MaxPool2d(kernel_size=3, stride=2, padding=0),  # (13-3)/2+1=6
            nn.Conv2d(in_channels=3, out_channels=64, kernel_size=5, stride=1, padding=2, bias=False),
            # (32-5+4)/1+1=32
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0),  # (32-3)/2+1=15
            nn.Conv2d(in_channels=64, out_channels=64, kernel_size=5, stride=1, padding=2, bias=False),
            # (15-5+4)/1+1=15
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0),  # (15-3)/2+1=7

        )
        self.feature_classify = torch.nn.Sequential(
            nn.Dropout(p=0.25),
            nn.Linear(in_features=64* 7 * 7, out_features=384),
            nn.Dropout(p=0.25),
            nn.Linear(in_features=384, out_features=192),
            nn.Linear(in_features=192, out_features=10),
        )

    def forward(self, x):
        x = self.feature_extraction(x)
        x = x.view(x.size(0),64 * 7*7)
        x = self.feature_classify(x)
        return x


net = AlexNet()
net = net.to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=0.02)
loss_func = torch.nn.CrossEntropyLoss()


def train(model, epoch):
    model.train()
    loss_all = 0
    acc_all = 0
    for i, (data, target) in enumerate(train_data):
        data, target = data.to(device), target.to(device)
        out = net(data)
        # print(out.size())
        # print(target.size())
        loss = loss_func(out, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        _, pre = out.max(1)
        train_correct = (pre == target).sum().float()
        acc = train_correct / data.shape[0]
        loss_all += float(loss)
        acc_all += acc
    print('epoch:{},acc:{:.4f},loss:{:.4f}'.format(epoch + 1, acc_all / len(train_data), loss_all))

def test(model, epoch):
    model.eval()
    loss_all = 0
    acc_all = 0
    for i, (data, target) in enumerate(test_data):
        data, target = data.to(device), target.to(device)
        out = net(data)
        # print(out.size())
        # print(target.size())
        loss = loss_func(out, target)
        _, pre = out.max(1)
        test_correct = (pre == target).sum().float()
        acc = test_correct / data.shape[0]
        loss_all += float(loss)
        acc_all += acc
    print('epoch:{},test_acc:{:.4f},test_loss:{:.4f}'.format(epoch + 1, acc_all / len(test_data), loss_all))

def main():
    for i in range(EPOCH):
        train(net, i)
        test(net,i)


if __name__ == '__main__':
    main()
# if __name__=='__main__':
#     net=AlexNet()
#     print(net)
#     input=torch.rand(128,3,32,32)
#     out=net(input)
#     print(out)
#     print(out.shape)
# for t,(x,y) in enumerate(train_data):
#     if t==0:
#         print(y)
#         print(y.size())
#         print(x.size())

 

标签:acc,10,nn,loss,cifar,test,epoch,CNN,out
来源: https://www.cnblogs.com/upuphe/p/13711726.html