cv
作者:互联网
scores = cross_val_score(model,train_x,train_y,cv=5,scoring='neg_mean_squared_error')
cv或者grid_search的惯例是,会令scoring尽可能大,因为一般score是准确率这种越大越好的,而不是mse这种越小越好的。
所以mse=-neg_mean_squared_error
rmse =(-neg_mean_squared_error)**0.5
标签:scoring,neg,squared,score,cv,mean 来源: https://www.cnblogs.com/yjybupt/p/13156784.html