其他分享
首页 > 其他分享> > [AHOI2017/HNOI2017]单旋

[AHOI2017/HNOI2017]单旋

作者:互联网

题目

  点这里看题目。

分析

  最妙的地方在于,这道题其实是用一种数据结构模拟另一种数据结构
  我们需要维护深度和树的结构,以下对于每个操作进行分别讨论。

插入一个新节点

  可以发现,这个新节点一定会成为自己的前驱或者后继中深度较大者的儿子
  然后可以更新深度和树的结构。

单旋最小值

  发现树会有如下的变化:
    如果自己有儿子,那么它只会是自己的右儿子;旋转后,它会接到自己原先的父亲上
    除了自己的儿子以外,其它的节点的深度都会 +1
    
原先的根变成了最小值的儿子
根随后变成最小值
  单旋最大值同理分析。

单旋最小值并删除

  先模拟好单旋的修改,然后考虑旋转后的变化:
    所有节点深度 -1
    
断开最小值和它的右儿子的边,根变为它的右儿子

  单旋最大值并删除同理分析。

  发现树的深度的修改实际上可以理解为值域上一段区间的加减,因此可以用权值线段树维护;前驱后继也可以顺便用它维护了。
  中途我们需要用 map 来维护树的形态,或者离散化之后直接存下来也可以。
  时间复杂度:\(O(n\log_2|V|)\)。

代码

#include <map>
#include <cstdio>
using namespace std;

const int up = 1e9/*4*/;
const int MAXN = 1e5 + 5, MAXLOG = 30, MAXS = MAXN * MAXLOG/*205*/;

template<typename _T>
void read( _T &x )
{
	x = 0;char s = getchar();int f = 1;
	while( s > '9' || s < '0' ){if( s == '-' ) f = -1; s = getchar();}
	while( s >= '0' && s <= '9' ){x = ( x << 3 ) + ( x << 1 ) + ( s - '0' ), s = getchar();}
	x *= f;
}

template<typename _T>
void write( _T x )
{
	if( x < 0 ){ putchar( '-' ); x = ( ~ x ) + 1; }
	if( 9 < x ){ write( x / 10 ); }
	putchar( x % 10 + '0' );
}

map<int, int> fa, ch[2];

int siz[MAXS], dep[MAXS], tag[MAXS], lch[MAXS], rch[MAXS];
int tot, rt, sgrt;

void upt( const int x ) { siz[x] = siz[lch[x]] + siz[rch[x]]; }
void add( const int x, const int v ) { dep[x] += siz[x] * v, tag[x] += v; }
void normalize( const int x ) { if( tag[x] ) add( lch[x], tag[x] ), add( rch[x], tag[x] ), tag[x] = 0; }

void setNode( int &u, const int l, const int r, const int pos, const int v )
{
	if( ! u ) u = ++ tot;
	if( l == r ) { siz[u] += v; return ; }
	int mid = l + r >> 1; normalize( u );
	if( pos <= mid ) setNode( lch[u], l, mid, pos, v );
	else setNode( rch[u], mid + 1, r, pos, v );
	upt( u );
}

void update( int &u, const int l, const int r, const int segL, const int segR, const int v )
{
	if( ! u ) u = ++ tot;
	if( segL <= l && r <= segR ) { add( u, v ); return ; }
	int mid = l + r >> 1; normalize( u );
	if( segL <= mid ) update( lch[u], l, mid, segL, segR, v );
	if( mid < segR ) update( rch[u], mid + 1, r, segL, segR, v );
	upt( u );
}

int query( const int u, const int l, const int r, const int segL, const int segR )
{
	if( ! u ) return 0;
	if( segL <= l && r <= segR ) return siz[u];
	int mid = l + r >> 1, ret = 0; normalize( u );
	if( segL <= mid ) ret += query( lch[u], l, mid, segL, segR );
	if( mid < segR ) ret += query( rch[u], mid + 1, r, segL, segR );
	return ret;
}

int Kth( const int u, const int l, const int r, const int rnk )
{
	if( l == r ) return l;
	int mid = l + r >> 1; normalize( u );
	if( rnk <= siz[lch[u]] ) return Kth( lch[u], l, mid, rnk );
	return Kth( rch[u], mid + 1, r, rnk - siz[lch[u]] );
}

int getDep( const int u, const int l, const int r, const int pos )
{
	if( l == r ) return dep[u];
	int mid = l + r >> 1; normalize( u );
	if( pos <= mid ) return getDep( lch[u], l, mid, pos );
	return getDep( rch[u], mid + 1, r, pos );
}

int Kth( const int rnk ) { if( rnk <= 0 ) return -1; if( rnk > siz[sgrt] ) return up + 1; return Kth( sgrt, 1, up, rnk ); }
int getDep( const int id ) { if( id < 0 || id > up ) return -0x3f3f3f3f; return getDep( sgrt, 1, up, id ); }

int getMx( const int u, const int l, const int r )
{
	if( l == r ) return l;
	int mid = l + r >> 1; normalize( u );
	if( siz[rch[u]] ) return getMx( rch[u], mid + 1, r );
	return getMx( lch[u], l, mid );
}

int getMn( const int u, const int l, const int r )
{
	if( l == r ) return l;
	int mid = l + r >> 1; normalize( u );
	if( siz[lch[u]] ) return getMn( lch[u], l, mid );
	return getMn( rch[u], mid + 1, r );
}

int rotMn()
{
	int id = getMn( sgrt, 1, up ), rig = ch[1][id], y = fa[id];
	if( rt == id ) return 1;
	if( rig ) fa[rig] = y; fa[rt] = id, fa[id] = 0;
	ch[1][id] = rt, ch[0][y] = rig, rt = id;
	int ret = getDep( id );
	update( sgrt, 1, up, y, up, 1 );
	update( sgrt, 1, up, id, id, -ret + 1 );
	return ret;
}

int rotMx()
{
	int id = getMx( sgrt, 1, up ), lef = ch[0][id], y = fa[id];
	if( rt == id ) return 1;
	if( lef ) fa[lef] = y; fa[rt] = id, fa[id] = 0;
	ch[0][id] = rt, ch[1][y] = lef, rt = id;
	int ret = getDep( id );
	update( sgrt, 1, up, 1, y, 1 );
	update( sgrt, 1, up, id, id, -ret + 1 );
	return ret;
}

int main()
{
	int op, k, N;
	read( N );
	while( N -- )
	{
		read( op );
		if( op == 1 )
		{
			read( k ), setNode( sgrt, 1, up, k, 1 );
			if( siz[1] == 1 ) 
			{ 
				fa[rt = k] = 0, update( sgrt, 1, up, k, k, 1 ); 
				puts( "1" );
				continue; 
			}
			int rnk = query( sgrt, 1, up, 1, k );
			int pre = Kth( rnk - 1 ), suf = Kth( rnk + 1 );
			int dpre = getDep( pre ), dsuf = getDep( suf );
			if( dpre > dsuf ) fa[k] = pre, ch[1][pre] = k, update( sgrt, 1, up, k, k, dpre + 1 );
			else fa[k] = suf, ch[0][suf] = k, update( sgrt, 1, up, k, k, dsuf + 1 );
			write( getDep( k ) ), putchar( '\n' );
		}
		if( op == 2 ) write( rotMn() ), putchar( '\n' );
		if( op == 3 ) write( rotMx() ), putchar( '\n' );
		if( op == 4 ) 
		{
			int ans = rotMn(), tmp = rt, y = ch[1][tmp];
			update( sgrt, 1, up, tmp + 1, up, -1 );
			update( sgrt, 1, up, tmp, tmp, - ans );
			if( y ) fa[y] = 0; ch[1][tmp] = 0, rt = y;
			setNode( sgrt, 1, up, tmp, -1 );
			write( ans ), putchar( '\n' );
		}
		if( op == 5 )
		{
			int ans = rotMx(), tmp = rt, y = ch[0][tmp];
			update( sgrt, 1, up, 1, tmp - 1, -1 );
			update( sgrt, 1, up, tmp, tmp, -ans );
			if( y ) fa[y] = 0; ch[0][tmp] = 0, rt = y;
			setNode( sgrt, 1, up, tmp, -1 );
			write( ans ), putchar( '\n' );
		}
	}
	return 0;
}

标签:const,int,AHOI2017,up,sgrt,HNOI2017,单旋,return,id
来源: https://www.cnblogs.com/crashed/p/13037105.html