其他分享
首页 > 其他分享> > prufer编码学习笔记

prufer编码学习笔记

作者:互联网

prufer 编码

对于一个无根树,他的 prufer 编码是这样确定的:

那么,通过给定的无根树求 prufer 编码就很简单了
比如下面这个无根树,它的 prufer 编码就是\(\texttt{125214}\)

这个 prufer 编码有一些很显然的性质
首先长度肯定是\(n-2\),但每个元素可能相同,然后对于每个无根树,它的 prufer 编码肯定也唯一
如果编码的每个元素都相同,那么它可以是一个编号最大的点连向其它所有点(特殊的菊花图),如果都不同,可以是一个链
当然,这里说“可以”是因为有可能还存在其它的构造方式

那么,prufer 编码对应的树是否唯一?
也就是说,每一个编码是不是只能求出唯一的树?
是可以的,先给出求的方式:
设这棵树点的集合为\(V\),初始状态下\(V=\{1,2,\cdots,n\}\)

然后验证一下刚才那个图,发现是正确的

可以感性理解一下,编码序列的第一个数,就是我们第一次删除叶子节点以后添加的它的相邻节点,而这个被删掉的节点肯定不在编码中,它也是序号最小的,所以还原树的时候就要把它和它相邻的那个被添加到编码中的点连边
然后每次都这样做就得出了原树
又因为在找编码的时候最后剩了两个节点,那两个节点肯定是连在一起的,所以这就是为什么要把\(V\)中剩下的两个点连边

所以,上面通过 prufer 编码求树的操作,也是唯一的


那么可以得出一下更深入的性质:

应该没有了,如果有大佬知道其它性质欢迎在评论区给出

然后有一些题,这些在tulun-prufer编码的分类中有题解
P4430 小猴打架
P2290 [HNOI2004]树的计数
P2624 [HNOI2008]明明的烦恼

标签:编码,cnt,sum,删掉,笔记,prufer,节点
来源: https://www.cnblogs.com/suxxsfe/p/12641578.html