Fourier transform
作者:互联网
前面曾经介绍过空间域滤波,空间域滤波就是用各种模板直接与图像进行卷积运算,实现对图像的处理,这种方法直接对图像空间操作,操作简单,所以也是空间域滤波。
频率域图像增强是指在图像的频率域中对图像进行某种处理的方法。这种方法以傅里叶变换为基础,也即先通过傅里叶变换把图像从空间域变换到频率域,然后用频率域方法对图像进行处理,处理完后再利用傅里叶反变换把图像变回空间域。
频域滤波说到底最终可能是和空间域滤波实现相同的功能,比如实现图像的轮廓提取,在空间域滤波中我们使用一个拉普拉斯模板就可以提取,而在频域内,我们使用一个高通滤波模板(因为轮廓在频域内属于高频信号),可以实现轮廓的提取。
既然是频域滤波就涉及到把图像首先变到频域内,那么把图像变到频域内的方法就是傅里叶变换。
傅里叶的原理表明,任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。利用傅立叶变换算法直接测量原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位就可以表示原始信号。
信号频谱代表了信号在不同频率分量成分的大小,能够提供比时域信号波形更直观,丰富的信息。
这个图就是把时域图像(大概是方波)变成了一系列的正弦波的线性叠加,其等价关系可以表示为:
f(原始信号)=A1sin(w1x+ϕ1)+A2sin(w2x+ϕ2)+...
那么w1,w2,...可以看成是频率的变化(一般认为就是从1,2,…n定死了),所有的A就是对应频率下的振幅,所有的ϕ就是对应频率下的相位,那么对于任一个信号,如果都认为频率w是从1,2,3…一直增加的话,那么每个信号就只由一组振幅与一组ϕ来决定,他们的不同决定了最终信号的不同。
如果各个频率的分量相位都是0的话,那么每个正弦分量的最大值(在频率轴附近的那个最大值)都会落在频率轴(频率轴和频率方向一致,垂直于时间方向)为0上,然而上述图并不是这样。在说简单一点,比如原始信号上有个凹槽,正好是由某一频率的分量叠加出来的,那么如果这个频率的相位变大一点或者变小一点的话,带来的影响就会使得这个凹槽向左或者向右移动一下,也就是说,相位的作用就是精确定位到信号上一点的位置的。
图像空间中是没有时间概念的,只是空间概念,不同的空间位置可以理解为不同的时间差。
傅里叶变换将信号分成不同频率成份。类似光学中的分色棱镜把白光按波长(频率)分成不同颜色,称数学棱镜。
傅里叶变换的成份:直流分量和交流分量
信号变化的快慢与频率域的频率有关。噪声、边缘、跳跃部分代表图像的高频分量;背景区域和慢变部分代表图像的低频分量。
再来理解下什么是振幅,振幅就是各个频率下的信号的决定程度有多大,如果某个频率的振幅越大,那么它对原始信号的的重要性越大,像上图,当然是w=1的时候振幅最大,说明它对总的信号影响最多(去掉w=1的信号,原始信号讲严重变形)。越往后面,也就是越高频,振幅逐渐减小,那么他们的作用就越小,而他们对于整体信号又有什么影响呢?既然越小,那就是影响小,所以其实去掉,原始信号也基本上不变,他们影响就在于对原始信号的细节上的表现,比如原始信号上的边边角角,偶尔有个小凸起凹槽什么的,这些小细节部分都是靠这些个影响不大的高频信号来表现出来的。深入推广一下,这就很好理解为什么图像的高频信号其实表现出来的就是图像的边缘轮廓、噪声等等这些细节的东西了,而低频信号,表现的却是图像上整块整块灰度大概一样的区域了(这些个区域又称为直流分量区域)。
标签:信号,滤波,transform,频域,频率,图像,Fourier,分量 来源: https://blog.csdn.net/weixin_44593822/article/details/105263721