numpy 创建数组
作者:互联网
创建数组的方式有很多种,比如使用array方法,并提供标准的Python列表或者元组作为参数。此时,数组的类型将根据序列中元素的类型推导出来。
>>> import numpy as np >>> a = np.array([2,3,4]) >>> a array([2, 3, 4]) >>> a.dtype dtype('int32') >>> b = np.array([1.2, 3.5, 5.1]) >>> b.dtype dtype('float64')
常见的错误是直接将多个数值作为参数传递,正确的做法是将他们以列表或元组的方式传递,如下:
>>> a = np.array(1,2,3,4) # 错误 >>> a = np.array([1,2,3,4]) # 正确
array函数会自动将二维或三维序列转换为对应的二维或三维数组。
>>> b = np.array([(1.5,2,3), (4,5,6)]) >>> b array([[ 1.5, 2. , 3. ], [ 4. , 5. , 6. ]])
在创建的时候,可以显式地指定数据的类型:
>>> c = np.array( [ [1,2], [3,4] ], dtype=complex ) >>> c array([[ 1.+0.j, 2.+0.j], [ 3.+0.j, 4.+0.j]])
那么我们只能玩数字么?不是的,字符串也可以,只是我们不常用而已:
>>> s = 'hellow world' >>> np.array(s) array('hellow world', dtype='<U12')
很多时候,数组的元素最初都是未知的,但其大小形状是已知的。因此,numpy提供了几个函数来创建带有初始占位符内容的数组。
函数zero创建一个都是0的数组,函数one创建一个都是1的数组,函数empty创建一个初始内容是0或者垃圾值的数组,这取决于内存当时的状态。默认情况下,创建的数组的数据类型为float64。
>>> np.zeros((5,), dtype = np.float) array([0., 0., 0., 0., 0.]) >>> np.zeros( (3,4) ) array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> np.ones( (2,3,4), dtype=np.int16 ) # 同样可以指定类型 array([[[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]], [[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]]], dtype=int16) >>> np.empty( (2,3) ) # 根据当前内存状态的不同,可能会返回未初始化的垃圾数值,不安全。 array([[0., 0., 0.], [0., 0., 0.]]) >>> np.full((3,4), 2.22) # 创建一个全部由2.22组成的数组 array([[2.22, 2.22, 2.22, 2.22], [2.22, 2.22, 2.22, 2.22], [2.22, 2.22, 2.22, 2.22]])
numpy还提供了一个返回array序列的函数,而不是返回一个Python的列表,这就是常用的arange函数:
>>> np.arange( 10, 30, 5 ) array([10, 15, 20, 25]) >>> np.arange( 0, 2, 0.3 ) # 可以接受浮点类型的参数,比如这里的步长 array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
其原型为:
numpy.arange(start, stop, step, dtype)
- start:范围的起始值,默认为0
- stop: 范围的终止值(不包含)
- step: 两个值的间隔,默认为1
- dtype: 返回ndarray的数据类型,如果没有提供,则会使用输入数据的类型。
当arange函数使用浮点步长的时候,可能出现精度的问题。这种情况下,我们一般使用linspace函数,它的第三个参数指定在区间内均匀生成几个数,至于步长,系统会自动计算。
>>> from numpy import pi # 导入圆周率 >>> np.linspace( 0, 2, 9 ) # 从0到2之间的9个数 array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ]) >>> x = np.linspace( 0, 2*pi, 100 ) # 从0到2Π之间,生成100个数 >>> f = np.sin(x)
其原型为:
numpy.linspace(start, stop, num, endpoint, retstep, dtype)
- start: 序列的起始值
- stop: 序列的终止值,如果endpoint为True,则终止值包含于序列中
- num: 要生成的等间隔样例数量,默认为50
- endpoint: 序列中是否包含stop值,默认为Ture
- retstep: 如果为True,返回样例以及连续数字之间的步长
- dtype: 输出ndarray的数据类型
更多类似的函数有:array, zeros, zeros_like, ones, ones_like, empty, empty_like, arange, linspace, numpy.random.rand, numpy.random.randn, fromfunction, fromfile
标签:创建,2.22,数组,dtype,np,array,numpy 来源: https://www.cnblogs.com/lavender1221/p/12604776.html