其他分享
首页 > 其他分享> > 线性回归

线性回归

作者:互联网

模型假设

\[ h(x) = \omega ^T x + b \]

损失函数

针对一个样例 \((x_i, y_i)\) 而言,损失为 \(\frac{1}{2}(\omega ^T x_i + b - y_i)^2\),记之为 \(J_i(\omega , b)\),下面对 \(\omega, \ b\) 求导:

\(dJ_i = d(\frac{1}{2}(\omega ^T x_i + b - y_i)^2)\)
\(\ \ \ \ \ = (\omega ^T x_i + b - y_i) \odot d(\omega ^T x_i + b - y_i)\)

由于损失值对 \(b\) 的导数是标量对标量,故而直接求得对 \(b\) 的偏导:
\[ \frac{\partial J_i}{\partial b} = \omega ^T x_i + b - y_i \]

由于对\(\omega\) 的导数是标量对矩阵求导,故而:

\(dJ_i = (\omega ^T x_i + b - y_i) \odot d(\omega ^T x_i)\)
\(\ \ \ \ \ = (\omega ^T x_i + b - y_i) \odot (d\omega ^T x_i + \omega ^T d x_i )\)
\(\ \ \ \ \ = (\omega ^T x_i + b - y_i) \odot d\omega ^T x_i\)
\(\ \ \ \ \ = tr((\omega ^T x_i + b - y_i) \odot x_i ^T d\omega )\)

最后可得对 $\omega $ 的偏导数:
\[ \frac{\partial J_i}{\partial \omega } = (\omega ^T x_i + b - y_i) \cdot x_i \]

再考虑所有样本,由于 \(J = \frac{1}{n} \sum_{i=1}^n J_i\),故而可以求得整体损失对 \(\omega , \ b\) 的导数:
\[ \frac{\partial J}{\partial \omega } = \frac{1}{n} \sum_{i=1}^n (\omega ^T x_i + b - y_i) \cdot x_i \\ \frac{\partial J}{\partial b } = \frac{1}{n} \sum_{i=1}^n (\omega ^T x_i + b - y_i) \]

矩阵计算

分别对 \(\omega , b\) 求导

给出各个变量的维度:\(X \in R^{n \times d}, y \in R^{n \times 1}, \omega \in R^{d \times 1}, b \in R, \textbf{1} \in R^{n \times 1}\)。于是,\(J\) 对 \(\omega , b\) 的导数可以表示如下:
\[ \frac{\partial J}{\partial \omega } = \frac{1}{n} X^T (X \omega + b - y) \\ \frac{\partial J}{\partial b } = \frac{1}{n} \textbf{1}^T (X \omega + b - y) \]

合并 \(\omega , b\)

记 \(\hat{X} = [x_i ^T, 1], \ \hat{\omega } = [\omega ; b]\),则损失对参数的导数是:
\[ \frac{\partial J}{\partial \hat{\omega} } =\frac{1}{n} \hat{X}^T (\hat{X}\hat{\omega } - y) \]

令其为零可得闭式解:
\[ \hat{\omega }= (\hat{X}^T \hat{X})^{-1} \hat{X}^T y \]

标签:frac,导数,hat,回归,odot,线性,partial,omega
来源: https://www.cnblogs.com/luyunan/p/12269240.html