高斯贝叶斯分类器(GNB实战)
作者:互联网
代码含学习曲线绘制。
1 from sklearn.datasets import load_breast_cancer 2 data=load_breast_cancer() 3 X,y=data.data,data.target 4 5 from sklearn.model_selection import train_test_split 6 X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=38) 7 8 from sklearn.naive_bayes import GaussianNB 9 gnb=GaussianNB().fit(X_train,y_train) 10 print("the score of this model on training set:{}".format(gnb.score(X_train,y_train))) 11 print("the score of this model on test set:{}".format(gnb.score(X_test,y_test)))
1 from sklearn.model_selection import learning_curve 2 from matplotlib import pyplot as plt 3 import numpy as np 4 def plot_learning_curve(estimator,title,X,y, 5 ylim=None,cv=None,n_jobs=1, 6 train_sizes=np.linspace(.1,1.0,5)): 7 plt.figure() 8 plt.title(title) 9 if ylim is not None: 10 plt.ylim(*ylim) 11 plt.xlabel("Training Examples") 12 plt.ylabel("Score") 13 train_sizes,train_scores,test_scores=learning_curve( 14 estimator,X,y,cv=cv,n_jobs=n_jobs,train_sizes=train_sizes 15 ) 16 train_scores_mean=np.mean(train_scores,axis=1) 17 test_scores_mean=np.mean(test_scores,axis=1) 18 plt.grid() 19 plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training Score") 20 plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation Score") 21 plt.legend(loc="lower right") 22 return plt
标签:GNB,plt,贝叶斯,分类器,train,scores,test,import,mean 来源: https://www.cnblogs.com/St-Lovaer/p/12245957.html