BZOJ2411 : 黄牌
作者:互联网
将裁判作为原点,求出原点到每个圆的切点。
将这些切点以及矩形的顶点极角排序,用堆维护最靠近裁判的圆。
对于一段相邻的极角区间,如果没有圆,那么对答案的贡献是三角形的面积。
否则求出两条射线与圆的交点$A,B$,则对答案的贡献是三角形$OAB$的面积减去三角形$OAB$与圆的交的面积。
时间复杂度$O(n\log n)$。
注意因为精度问题,求射线与圆的交点时可能会被判断为不存在交点,此时应该直接用切点。
#include<cstdio> #include<cmath> #include<algorithm> #include<queue> #include<vector> using namespace std; typedef long double ld; typedef pair<int,int>PI; const int N=1005; const ld pi=acos(-1.0),eps=1e-9; int n,m,h,w,w0,i,radius[N],ce,in[N],d[N];ld ans; priority_queue<PI,vector<PI>,greater<PI> >q; struct E{ld x;int p;E(){}E(ld _x,int _p,int _t){x=_x,p=_p<<3|_t;}}e[N<<1]; inline bool cmp(const E&a,const E&b){return a.x<b.x;} inline void add(int x){in[x]=1;q.push(PI(d[x],x));} inline int sgn(ld x){ if(x<-eps)return -1; if(x>eps)return 1; return 0; } inline bool Quadratic(ld A,ld B,ld C,ld *t0,ld *t1){ ld discrim=B*B-4.f*A*C; if(discrim<0.)return 0; ld rootDiscrim=sqrt(discrim); ld q; if(B<0)q=-.5f*(B-rootDiscrim); else q=-.5f*(B+rootDiscrim); *t0=q/A;*t1=C/q; if(*t0>*t1)swap(*t0,*t1); return 1; } struct P{ ld x,y; P(){x=y=0;} P(ld _x,ld _y){x=_x,y=_y;} P operator+(const P&b)const{return P(x+b.x,y+b.y);} P operator-(const P&b)const{return P(x-b.x,y-b.y);} P operator*(ld b)const{return P(x*b,y*b);} P operator/(ld b)const{return P(x/b,y/b);} ld operator*(const P&b)const{return x*b.x+y*b.y;} ld len()const{return hypot(x,y);} ld len_sqr()const{return x*x+y*y;} P rotate(ld c)const{return P(x*cos(c)-y*sin(c),x*sin(c)+y*cos(c));} P trunc(ld l)const{return(*this)*l/len();} }O,left[N],right[N]; inline ld cross(const P&a,const P&b){return a.x*b.y-a.y*b.x;} inline ld get_angle(const P&a,const P&b){return fabs(atan2(fabs(cross(a,b)),a*b));} inline P lerp(const P&a,const P&b,ld t){return a*(1-t)+b*t;} struct circle{ P c;ld r; circle(){c=P(0,0),r=0;} circle(P _c,ld _r){c=_c,r=_r;} }cir[N]; inline void getTangents(const P&p,const circle&C,P&A,P&B){ P u=C.c-p; ld dist=u.len(),ang=asin(C.r/dist); u=u.trunc(sqrt(u.len_sqr()-C.r*C.r)); A=u.rotate(-ang)+p; B=u.rotate(ang)+p; } inline bool circle_line_intersection(const circle&c,const P&a,const P&b,ld *t0,ld *t1){ P d=b-a;ld A=d*d; ld B=d*(a-c.c)*2.0; ld C=(a-c.c).len_sqr()-c.r*c.r; return Quadratic(A,B,C,t0,t1); } inline ld circle_triangle_intersection_area(const circle&c,const P&a,const P&b){ if(sgn(cross(a-c.c,b-c.c))==0)return 0; static P q[5];int len=0;ld t0,t1;q[len++]=a; if(circle_line_intersection(c,a,b,&t0,&t1)){ if(0<=t0&&t0<=1)q[len++]=lerp(a,b,t0); if(0<=t1&&t1<=1)q[len++]=lerp(a,b,t1); } q[len++]=b;ld s=0; for(int i=1;i<len;i++){ P z=(q[i-1]+q[i])/2; if((z-c.c).len_sqr()<=c.r*c.r) s+=fabs(cross(q[i-1]-c.c,q[i]-c.c))/2; else s+=c.r*c.r*get_angle(q[i-1]-c.c,q[i]-c.c)/2; } return s; } inline ld circle_polygon_intersection_area(const circle&c,const P&A,const P&B){ static P v[9]; int n=3; v[0]=O; v[1]=A; v[2]=B; ld s=0; for(int i=0;i<n;i++){ int j=(i+1)%n; s+=circle_triangle_intersection_area(c,v[i],v[j])*sgn(cross(v[i]-c.c,v[j]-c.c)); } return fabs(s); } inline P line_intersection(const P&a,const P&b,const P&p,const P&q){ ld U=cross(p-a,q-p),D=cross(b-a,q-p); return a+(b-a)*(U/D); } inline ld triangle_area(const P&A,const P&B){ return fabs(cross(O,A)+cross(A,B)+cross(B,O))/2; } inline void solve(ld L,ld R){ if(L+eps>R)return; P A=P(cos(L),sin(L))+O; P B=P(cos(R),sin(R))+O; while(!q.empty()&&!in[q.top().second])q.pop(); if(q.empty()){ P C,D; if(m==0)C=P(w,0),D=P(w,h); else if(m==1)C=P(0,h),D=P(w,h); else C=P(0,0),D=P(0,h); ans+=triangle_area(line_intersection(O,A,C,D),line_intersection(O,B,C,D)); return; } int x=q.top().second; ld t0,t1;P _A,_B; if(circle_line_intersection(cir[x],O,A,&t0,&t1))_A=lerp(O,A,t0);else _A=left[x]; if(circle_line_intersection(cir[x],O,B,&t0,&t1))_B=lerp(O,B,t0);else _B=right[x]; ans+=triangle_area(_A,_B)-circle_polygon_intersection_area(cir[x],_A,_B); } int main(){ scanf("%d%d%d%d",&n,&w,&h,&w0); O=P(w0,0); e[++ce]=E(atan2(h,w-w0),0,1); e[++ce]=E(atan2(h,-w0),0,2); for(i=1;i<=n;i++){ int x,y; scanf("%d%d%d",&x,&y,&radius[i]); cir[i]=circle(P(x,y),radius[i]); int w=(x-w0)*(x-w0)+y*y; d[i]=w-radius[i]*radius[i]; ld t=atan2(y,x-w0),o=asin(radius[i]/sqrt(w)),l=t-o,r=t+o; e[++ce]=E(l,i,4); e[++ce]=E(r,i,5); P A,B; getTangents(O,cir[i],A,B); left[i]=A; right[i]=B; } sort(e+1,e+ce+1,cmp); for(i=1;i<=ce;i++){ solve(e[i-1].x,e[i].x); if((e[i].p&7)==4)add(e[i].p>>3); else if((e[i].p&7)==5)in[e[i].p>>3]=0; else m=e[i].p&7; } solve(e[ce].x,pi); ans/=h*w; return printf("%.8f",(double)ans),0; }
标签:黄牌,return,BZOJ2411,ld,t0,t1,const,circle 来源: https://www.cnblogs.com/clrs97/p/12163880.html