【简要题解】Hihocoder 重复旋律1-8简要题解
作者:互联网
【简要题解】Hihocoder 重复旋律1-8简要题解
编号 | 名称标签 | 难度 |
---|---|---|
1403 | 后缀数组一·重复旋律 | Lv.4 |
1407 | 后缀数组二·重复旋律2 | Lv.4 |
1415 | 后缀数组三·重复旋律3 | Lv.4 |
1419 | 后缀数组四·重复旋律4 | Lv.4 |
1445 | 后缀自动机二·重复旋律5 | Lv.4 |
1449 | 后缀自动机三·重复旋律6 | Lv.4 |
1457 | 后缀自动机四·重复旋律7 | Lv.1 |
1465 | 后缀自动机五·重复旋律8 | Lv.1 |
1466 | 后缀自动机六·重复旋律9 | Lv.1 |
后缀数组
思路简单但是实现要想一想?之前我看的是什么lj教程,不如自己xjb强行写一下递归形式的然后改成循环就好了(我自己写的跑得贼慢,什么时候看看别人咋改进的)
关于height数组,它的性质是显然的就不讲了,不过height数组给人的启示是,带有前缀交性质的查询可以将元素按照字典序排序,这样连续一段的前缀交=\((l,R]\)的相邻前缀交了。同时也有\(h[i]\ge h[i-1]-1\)这个结论。
重复旋律1
题目大意是问你满足这个条件的子串的最长长度
条件:在母串出现次数至少为k次(可以重叠出现)
子串=后缀的前缀,现在只要定位height数组任意一个长度为k-1的子段,查询一下其中的最小值,我们是要求这些最小值的最大值。线段树就行了
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mid ((l+r)>>1)
#define lef l,mid,pos<<1
#define rgt mid+1,r,pos<<1|1
#define DEBUG(s,a) cerr<<#s" = "<<(s)<<" \n"[(a)==1]
using namespace std; typedef long long ll; char __buf[1<<18],*__c=__buf,*__ed=__buf;
inline int qr(){
int ret=0,f=0,c=getchar();
while(!isdigit(c))f|=c==45,c=getchar();
while(isdigit(c)) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=1e5+5;
char c[maxn];
int sa[maxn],h[maxn],rk[maxn],seg[maxn<<2],n;
void sufsort(char*c,int*sa,int*rk,int*h,int n){
static int temp[maxn<<1],b[maxn];
c[0]='!';
for(int k=0,m=128;(1<<k>>1)<=n;++k){
if(!k) for(int t=1;t<=n;++t) temp[t]=t,rk[t]=c[t],temp[t+n]=0;
int l=1<<k>>1,p=0,q=l;
for(int t=1;t<=n;++t){
if(sa[t]>=n-l+1) temp[++p]=sa[t];
if(sa[t]>l) temp[++q]=sa[t]-l;
}
for(int t=1;t<=n;++t) ++b[rk[t]];
for(int t=1;t<=m;++t) b[t]+=b[t-1];
for(int t=n;t;--t) sa[b[rk[temp[t]]]--]=temp[t];
memset(b,0,(m+1)<<2); memcpy(temp+1,rk+1,n<<2); rk[sa[1]]=1;
for(int t=2;t<=n;++t)
rk[sa[t]]=temp[sa[t]]==temp[sa[t-1]]&&temp[sa[t]+l]==temp[sa[t-1]+l]?rk[sa[t-1]]:rk[sa[t-1]]+1;
m=rk[sa[n]];
}
for(int t=1,l=0;t<=n;++t){
if(l) --l;
if(rk[t]>1) while(c[t+l]==c[sa[rk[t]-1]+l]) ++l;
else l=0;
h[rk[t]]=l;
}
}
void build(int l,int r,int pos){
if(l==r) return seg[pos]=h[l],void();
build(lef); build(rgt);
seg[pos]=min(seg[pos<<1],seg[pos<<1|1]);
}
int que(int L,int R,int l,int r,int pos){
if(L>r||R<l) return 1e9;
if(L<=l&&r<=R) return seg[pos];
return min(que(L,R,lef),que(L,R,rgt));
}
int que(int l,int r){
if(rk[l]>rk[r]) swap(l,r);
return que(rk[l]+1,rk[r],1,n,1);
}
int main(){
scanf("%s",c+1); n=strlen(c+1);
sufsort(c,sa,rk,h,n);
build(1,n,1);
int ans=0;
for(int t=1;t<=n;++t)
for(int i=1;i<=n-t;i+=t){
int k=que(i,i+t);
ans=max(ans,k/t+1);
if(i>=t-k%t) ans=max(que(i-t+k%t,i+k%t)/t+1,ans);
}
printf("%d\n",ans);
return 0;
}
重复旋律2
题目大意是问你满足这个条件的子串的最长长度
条件:在母串出现次数至少为k次(不可以重叠出现)
现在问题其实就变成了:
\[
\max l \text{ 使得}
\\
\exist i,j \text{ 满足 } i<j-l \and \text{lcp}(i,j)\ge l
\]
显然满足二分性,二分就行。
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
#define DEBUG(s,a) cerr<<#s" = "<<(s)<<" \n"[(a)==1]
#define mid ((l+r)>>1)
using namespace std; typedef long long ll;
inline int qr(){
int ret=0,f=0,c=getchar();
while(!isdigit(c))f|=c==45,c=getchar();
while(isdigit(c)) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=1e5+5;
int rk[maxn],sa[maxn],c[maxn],height[maxn],n;
inline void sufsort(int*str,int*sa,int*rk,int*height,int n){
static int temp[maxn<<1],buk[maxn];
str[0]=-1;
for(int k=0,m=1000;(1<<k>>1)<=n;++k){
if(!k) for(int t=1;t<=n;++t) temp[t]=t,temp[t+n]=0,rk[t]=str[t];
int l=1<<k>>1,p=0,q=l;
for(int t=1;t<=n;++t){
if(sa[t]>=n-l+1) temp[++p]=sa[t];
if(sa[t]>l) temp[++q]=sa[t]-l;
}
for(int t=1;t<=n;++t) ++buk[rk[t]];
for(int t=1;t<=m;++t) buk[t]+=buk[t-1];
for(int t=n;t;--t) sa[buk[rk[temp[t]]]--]=temp[t];
memset(buk,0,(m+1)<<2); memcpy(temp+1,rk+1,n<<2); rk[sa[1]]=1;
for(int t=1;t<=n;++t)
rk[sa[t]]=temp[sa[t]]==temp[sa[t-1]]&&temp[sa[t]+l]==temp[sa[t-1]+l]?rk[sa[t-1]]:rk[sa[t-1]]+1;
m=rk[sa[n]];
}
for(int t=1,l=0;t<=n;++t){
if(l) --l;
if(rk[t]>1) while(str[t+l]==str[sa[rk[t]-1]+l]) ++l;
else l=0;
height[rk[t]]=l;
}
}
bool chek(int k){
for(int l=1,r=1;r<=n;l=++r){
if(height[l]<k) continue;
int Min=sa[l],Max=sa[l];
if(l>1) Min=min(sa[l-1],Min),Max=max(Max,sa[l-1]);
while(r<n&&height[r+1]>=k) ++r,Min=min(Min,sa[r]),Max=max(Max,sa[r]);
if(Max-Min+1>k) return 1;
}
return 0;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
n=qr();
for(int t=1;t<=n;++t) c[t]=qr();
sufsort(c,sa,rk,height,n);
int l=0,r=n;
do
if(chek(mid)) l=mid+1;
else r=mid-1;
while(l<=r);
printf("%d\n",r);
return 0;
}
重复旋律3
问两个串的最长公共子串。
按道理应该可以AC自动机做,但是我没想出来
把两个串顺序连接在一起,中间设放一个分隔符位置设为k,问题就变成了
\[
\max l \text{ 使得}
\\
\exist i,j \text{ 满足 } i<k\and j>k \and \text{lcp}(i,j)\ge l
\]
显然满足二分性,直接二分就行
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mid ((l+r)>>1)
#define DEBUG(s,a) cerr<<#s" = "<<(s)<<" \n"[(a)==1]
using namespace std; typedef long long ll; char __buf[1<<18],*__c=__buf,*__ed=__buf;
inline int qr(){
int ret=0,f=0,c=getchar();
while(!isdigit(c))f|=c==45,c=getchar();
while(isdigit(c)) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=2e5+5;
int sa[maxn],rk[maxn],height[maxn],n,k;
char c[maxn];
void sufsort(char*str,int*sa,int*rk,int*height,int n){
static int temp[maxn<<1],buk[maxn];
str[0]='~';
for(int k=0,m=1000;(1<<k>>1)<=n;++k){
if(!k) for(int t=1;t<=n;++t) temp[t]=t,temp[t+n]=0,rk[t]=str[t];
int l=1<<k>>1,p=0,q=l;
for(int t=1;t<=n;++t){
if(sa[t]>=n-l+1) temp[++p]=sa[t];
if(sa[t]>l) temp[++q]=sa[t]-l;
}
for(int t=1;t<=n;++t) ++buk[rk[t]];
for(int t=1;t<=m;++t) buk[t]+=buk[t-1];
for(int t=n;t;--t) sa[buk[rk[temp[t]]]--]=temp[t];
memset(buk,0,(m+1)<<2); memcpy(temp+1,rk+1,n<<2); rk[sa[1]]=1;
for(int t=2;t<=n;++t)
rk[sa[t]]=temp[sa[t]]==temp[sa[t-1]]&&temp[sa[t]+l]==temp[sa[t-1]+l]?rk[sa[t-1]]:rk[sa[t-1]]+1;
m=rk[sa[n]];
}
for(int t=1,l=0;t<=n;++t){
if(l) --l;
if(rk[t]>1) while(str[t+l]==str[sa[rk[t]-1]+l]) ++l;
else l=0;
height[rk[t]]=l;
}
}
bool chek(int L){
for(int l=1,r=1;r<=n;l=++r){
if(height[l]<L) continue;
int Min=sa[l],Max=sa[l];
if(l>1) Min=min(sa[l-1],Min),Max=max(Max,sa[l-1]);
while(r<n&&height[r+1]>=L) ++r,Min=min(Min,sa[r]),Max=max(Max,sa[r]);
if(Min<k&&Max>k) return 1;
}
return 0;
}
int main(){
scanf("%s",c+1);
n=strlen(c+1); c[k=++n]='_';
scanf("%s",c+n);
n=strlen(c+1);
sufsort(c,sa,rk,height,n);
int l=0,r=n;
do
if(chek(mid)) l=mid+1;
else r=mid-1;
while(l<=r);
printf("%d\n",r);
return 0;
}
重复旋律4
题意是问你,母串的某个子段可以被表示成k个相同的串重复k次,给你母串问你最大可能的k
用别的方法描述一下这个问题,就变成了要你在母串中找到一个位置的数列\(P=\{p_i\}\)满足\(P\)是一个等差数列且要求任意两个\(p\)的\(\text{lcp} \ge d\) ,答案是最大的\(|P|\)。
序列上的等差子序列问题一般和一个复杂度是调和级数\((O(1))\)的经典做法有关...
下午再更
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mid ((l+r)>>1)
#define lef l,mid,pos<<1
#define rgt mid+1,r,pos<<1|1
#define DEBUG(s,a) cerr<<#s" = "<<(s)<<" \n"[(a)==1]
using namespace std; typedef long long ll; char __buf[1<<18],*__c=__buf,*__ed=__buf;
inline int qr(){
int ret=0,f=0,c=getchar();
while(!isdigit(c))f|=c==45,c=getchar();
while(isdigit(c)) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=1e5+5;
char c[maxn];
int sa[maxn],h[maxn],rk[maxn],seg[maxn<<2],n;
void sufsort(char*c,int*sa,int*rk,int*h,int n){
static int temp[maxn<<1],b[maxn];
c[0]='!';
for(int k=0,m=128;(1<<k>>1)<=n;++k){
if(!k) for(int t=1;t<=n;++t) temp[t]=t,rk[t]=c[t],temp[t+n]=0;
int l=1<<k>>1,p=0,q=l;
for(int t=1;t<=n;++t){
if(sa[t]>=n-l+1) temp[++p]=sa[t];
if(sa[t]>l) temp[++q]=sa[t]-l;
}
for(int t=1;t<=n;++t) ++b[rk[t]];
for(int t=1;t<=m;++t) b[t]+=b[t-1];
for(int t=n;t;--t) sa[b[rk[temp[t]]]--]=temp[t];
memset(b,0,(m+1)<<2); memcpy(temp+1,rk+1,n<<2); rk[sa[1]]=1;
for(int t=2;t<=n;++t)
rk[sa[t]]=temp[sa[t]]==temp[sa[t-1]]&&temp[sa[t]+l]==temp[sa[t-1]+l]?rk[sa[t-1]]:rk[sa[t-1]]+1;
m=rk[sa[n]];
}
for(int t=1,l=0;t<=n;++t){
if(l) --l;
if(rk[t]>1) while(c[t+l]==c[sa[rk[t]-1]+l]) ++l;
else l=0;
h[rk[t]]=l;
}
}
void build(int l,int r,int pos){
if(l==r) return seg[pos]=h[l],void();
build(lef); build(rgt);
seg[pos]=min(seg[pos<<1],seg[pos<<1|1]);
}
int que(int L,int R,int l,int r,int pos){
if(L>r||R<l) return 1e9;
if(L<=l&&r<=R) return seg[pos];
return min(que(L,R,lef),que(L,R,rgt));
}
int que(int l,int r){
if(rk[l]>rk[r]) swap(l,r);
return que(rk[l]+1,rk[r],1,n,1);
}
int main(){
scanf("%s",c+1); n=strlen(c+1);
sufsort(c,sa,rk,h,n);
build(1,n,1);
int ans=0;
for(int t=1;t<=n;++t)
for(int i=1;i<=n-t;i+=t){
int k=que(i,i+t);
ans=max(ans,k/t+1);
if(i>=t-k%t) ans=max(que(i-t+k%t,i+k%t)/t+1,ans);
}
printf("%d\n",ans);
return 0;
}
标签:简要,return,int,题解,Hihocoder,++,sa,include,rk 来源: https://www.cnblogs.com/winlere/p/12114519.html