表之间的PySpark正则表达式匹配
作者:互联网
我正在尝试使用PySpark从列中提取正则表达式模式.我有一个包含正则表达式模式的数据框,然后有一个包含我要匹配的字符串的表.
columns = ['id', 'text']
vals = [
(1, 'here is a Match1'),
(2, 'Do not match'),
(3, 'Match2 is another example'),
(4, 'Do not match'),
(5, 'here is a Match1')
]
df_to_extract = sql.createDataFrame(vals, columns)
columns = ['id', 'Regex', 'Replacement']
vals = [
(1, 'Match1', 'Found1'),
(2, 'Match2', 'Found2'),
]
df_regex = sql.createDataFrame(vals, columns)
我想匹配“ df_to_extract”的“文本”列中的“正则表达式”列.我想针对每个ID提取术语,并在结果表中包含ID和与“ Regex”相对应的“替换”.例如:
+---+------------+
| id| replacement|
+---+------------+
| 1| Found1|
| 3| Found2|
| 5| Found1|
+---+------------+
谢谢!
解决方法:
一种方法是在加入条件下使用pyspark.sql.functions.expr
,它允许您将use a column value as a parameter设置为0.
例如:
from pyspark.sql.functions import expr
df_to_extract.alias("e")\
.join(
df_regex.alias("r"),
on=expr(r"e.text LIKE concat('%', r.Regex, '%')"),
how="inner"
)\
.select("e.id", "r.Replacement")\
.show()
#+---+-----------+
#| id|Replacement|
#+---+-----------+
#| 1| Found1|
#| 3| Found2|
#| 5| Found1|
#+---+-----------+
在这里,我使用了sql表达式:
e.text LIKE concat('%', r.Regex, '%')
它将连接所有文本行类似于Regex列的行,其中%用作通配符以捕获之前和之后的所有内容.
标签:pyspark-sql,apache-spark,pyspark,python 来源: https://codeday.me/bug/20191211/2106759.html