使用熊猫MultiIndex时如何基于索引值进行插值?
作者:互联网
我有人口统计面板数据,其中每个数据点均按国家/地区,性别,年份和年龄分类.对于给定的国家/地区,性别和年份,我的年龄模式缺少数据,因此我想根据年龄值进行插值.例如,如果5岁的孩子的值为5,而10岁的孩子的值为10,则6.3岁的孩子的值为6.3.我无法使用默认的熊猫“线性”插值方法,因为我的年龄组不是线性间隔的.我的数据如下所示:
iso3s = ['USA', 'CAN']
age_start_in_years = [0, 0.01, 0.1, 1]
years = [1990, 1991]
sexes = [1,2]
multi_index = pd.MultiIndex.from_product([iso3s,sexes,years,age_start_in_years],
names = ['iso3','sex','year','age_start'])
frame_length = len(iso3s)*len(age_start_in_years)*len(years)*len(sexes)
test_df = pd.DataFrame({'value':range(frame_length)},index=multi_index)
test_df=test_df.sortlevel()
# Insert missingness to practice interpolating
idx = pd.IndexSlice
test_df.loc[idx[:,:,:,[0.01,0.1]],:] = np.NaN
test_df
value
iso3 sex year age_start
CAN 1 1990 0.00 0
0.01 NaN
0.10 NaN
1.00 3
1991 0.00 4
0.01 NaN
0.10 NaN
1.00 7
2 1990 0.00 8
...
但是,当我尝试使用test_df.interpolate(method =’index’)时,出现此错误:
ValueError: Only `method=linear` interpolation is supported on MultiIndexes.
当然,必须有一些根据索引值进行插值的方法.
解决方法:
我发现这个骇人的解决方法摆脱了MultiIndex,并使用了groupby和transform的组合:
def multiindex_interp(x, interp_col, step_col):
valid = ~pd.isnull(x[interp_col])
invalid = ~valid
x['last_valid_value'] = x[interp_col].ffill()
x['next_valid_value'] = x[interp_col].bfill()
# Generate a new Series filled with NaN's
x['last_valid_step'] = np.NaN
# Copy the step value where we have a valid value
x['last_valid_step'][valid] = x[step_col][valid]
x['last_valid_step'] = x['last_valid_step'].ffill()
x['next_valid_step'] = np.NaN
x['next_valid_step'][valid] = x[step_col][valid]
x['next_valid_step'] = x['next_valid_step'].bfill()
# Simple linear interpolation= distance from last step / (range between closest valid steps) *
# difference between closest values + last value
x[interp_col][invalid] = (x[step_col]-x['last_valid_step'])/(x['next_valid_step'] - x['last_valid_step']) \
* (x['next_valid_value']-x['last_valid_value']) \
+ x['last_valid_value']
return x
test_df = test_df.reset_index(drop=False)
grouped = test_df.groupby(['iso3','sex','year'])
interpolated = grouped.transform(multiindex_interp,'value','age_start')
test_df['value'] = interpolated['value']
test_df
iso3 sex year age_start value
0 CAN 1 1990 0.00 16.00
1 CAN 1 1990 0.01 16.03
2 CAN 1 1990 0.10 16.30
3 CAN 1 1990 1.00 19.00
4 CAN 1 1991 0.00 20.00
5 CAN 1 1991 0.01 20.03
6 CAN 1 1991 0.10 20.30
7 CAN 1 1991 1.00 23.00
8 CAN 2 1990 0.00 24.00
9 CAN 2 1990 0.01 24.03
10 CAN 2 1990 0.10 24.30
11 CAN 2 1990 1.00 27.00
...
标签:pandas,python,interpolation 来源: https://codeday.me/bug/20191119/2038553.html