HDU6704 K-th occurrence
作者:互联网
[传送门]
先求出SA和height。然后找到 rank[l] 的 height 值。能成为相同子串的就是和rank[l]的lcp不小于 $len$ 的。二分出左右端点之后,主席树求第k小即可。
#include <bits/stdc++.h> const int N = 1e5 + 7; char s[N]; int n, q; namespace SA { int sa[N], rk[N], fir[N], sec[N], c[N], height[N]; int mn[N][20], lg[N]; void build(int len, int num = 122) { register int i, j, k; for (i = 1; i <= num; i++) c[i] = 0; for (i = 1; i <= len; i++) ++c[fir[i] = s[i]]; for (i = 1; i <= num; i++) c[i] += c[i - 1]; for (i = len; i >= 1; i--) sa[c[fir[i]]--] = i; for (k = 1; k <= len; k <<= 1) { int cnt = 0; for (i = len - k + 1; i <= len; i++) sec[++cnt] = i; for (i = 1; i <= len; i++) if (sa[i] > k) sec[++cnt] = sa[i] - k; for (i = 1; i <= num; i++) c[i] = 0; for (i = 1; i <= len; i++) ++c[fir[i]]; for (i = 1; i <= num; i++) c[i] += c[i - 1]; for (i = len; i >= 1; i--) sa[c[fir[sec[i]]]--] = sec[i], sec[i] = 0; std::swap(fir, sec); fir[sa[1]] = 1; cnt = 1; for (i = 2; i <= len; i++) fir[sa[i]] = (sec[sa[i]] == sec[sa[i - 1]] && sec[sa[i] + k] == sec[sa[i - 1] + k]) ? cnt : ++cnt; if (cnt == len) break; num = cnt; } k = 0; for (i = 1; i <= len; i++) rk[sa[i]] = i; for (i = 1; i <= len; i++) { if (rk[i] == 1) continue; if (k) k--; j = sa[rk[i] - 1]; while (j + k <= len && i + k <= len && s[i + k] == s[j + k]) k++; height[rk[i]] = k; } } inline int MIN(int a, int b) { return height[a] < height[b] ? a : b; } void init_RMQ(int n) { for (int i = 1, j = 0; i <= n; i++) lg[i] = (1 << (j + 1)) == i ? ++j : j; for (int i = 1; i <= n; i++) mn[i][0] = i; for (int j = 1; j < 20; j++) for (int i = 1; i + (1 << j) - 1 <= n; i++) mn[i][j] = MIN(mn[i][j - 1], mn[i + (1 << (j - 1))][j - 1]); } int RMQ(int a, int b) { int log = lg[b - a + 1]; b -= (1 << log) - 1; return MIN(mn[a][log], mn[b][log]); } int LCP(int i, int j) { i = rk[i], j = rk[j]; if (i > j) std::swap(i, j); return height[RMQ(i + 1, j)]; } } int root[N]; struct Seg { struct Tree { int lp, rp, sum; } tree[N * 20]; int tol; inline void clear() { tol = 0; memset(tree, 0, sizeof(tree)); } void update(int &p, int q, int l, int r, int pos) { tree[p = ++tol] = tree[q]; tree[p].sum++; if (l == r) return; int mid = l + r >> 1; if (pos <= mid) update(tree[p].lp, tree[q].lp, l, mid, pos); else update(tree[p].rp, tree[q].rp, mid + 1, r, pos); } int query(int p, int q, int l, int r, int k) { if (l == r) return l; int mid = l + r >> 1; int sum = tree[tree[p].lp].sum - tree[tree[q].lp].sum; if (sum >= k) return query(tree[p].lp, tree[q].lp, l, mid, k); return query(tree[p].rp, tree[q].rp, mid + 1, r, k - sum); } } seg; int solve(int x, int y, int k) { int len = y - x + 1; int L = SA::rk[x]; if (SA::height[L] >= len) { int l = 1, r = L; while (l <= r) { int mid = l + r >> 1; if (SA::LCP(SA::sa[mid], x) >= len) L = mid, r = mid - 1; else l = mid + 1; } } int R = SA::rk[x]; if (SA::height[SA::rk[x] + 1] >= len) { int l = SA::rk[x] + 1, r = n; while (l <= r) { int mid = l + r >> 1; if (SA::LCP(x, SA::sa[mid]) >= len) R = mid, l = mid + 1; else r = mid - 1; } } //printf("%d %d\n", L, R); if (k > seg.tree[root[R]].sum - seg.tree[root[L - 1]].sum) return -1; return seg.query(root[R], root[L - 1], 1, n, k); } int main() { freopen("in.txt", "r", stdin); int T; scanf("%d", &T); while (T--) { scanf("%d%d", &n, &q); scanf("%s", s + 1); SA::build(n); SA::init_RMQ(n); seg.clear(); for (int i = 1; i <= n; i++) seg.update(root[i], root[i - 1], 1, n, SA::sa[i]); while (q--) { int l, r, k; scanf("%d%d%d", &l, &r, &k); printf("%d\n", solve(l, r, k)); } } return 0; }View Code
标签:occurrence,int,sum,HDU6704,tree,mid,len,th,SA 来源: https://www.cnblogs.com/Mrzdtz220/p/11700354.html