其他分享
首页 > 其他分享> > 如何对OpenCV进行立体声校准和矫正?

如何对OpenCV进行立体声校准和矫正?

作者:互联网

我已经在这个主题上研究了将近一个星期,但仍找不到任何可靠的解决方案.
有趣的是,从来没有人发布过关于如何使用OpenCV校准和矫正立体相机以计算深度的简单解决方案,从现在开始(this进行校准,this进行矫正,尽管如此,发布的代码并未完全集成) )我想出了以下代码快照,但是它不能纠正图像好!

import numpy as np
import cv2
import glob

# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*9,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2)

# Arrays to store object points and image points from all the images.
objpoints = {} # 3d point in real world space
imgpoints = {} # 2d points in image plane.

# calibrate stereo
for side in ['left', 'right']:
    counter = 0
    images = glob.glob('images/%s*.jpg' %side)
    objpoints[side] = [];
    imgpoints[side] = [];
    for fname in images:
        img = cv2.imread(fname)
        gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

        # Find the chess board corners
        ret, corners = cv2.findChessboardCorners(gray, (9,6),None)
        # If found, add object points, image points (after refining them)
        if ret == True:
            objpoints[side].append(objp)

            cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
            imgpoints[side].append(corners)
            counter += 1

    assert counter == len(images), "missed chessboard!!"


stereocalib_criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 100, 1e-5)
stereocalib_flags = cv2.CALIB_FIX_ASPECT_RATIO | cv2.CALIB_ZERO_TANGENT_DIST | cv2.CALIB_SAME_FOCAL_LENGTH | cv2.CALIB_RATIONAL_MODEL | cv2.CALIB_FIX_K3 | cv2.CALIB_FIX_K4 | cv2.CALIB_FIX_K5
retval,cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F = cv2.stereoCalibrate(objpoints['left'], imgpoints['left'], imgpoints['right'], (640, 480), criteria = stereocalib_criteria, flags = stereocalib_flags)

rectify_scale = 0.1 # 0=full crop, 1=no crop
R1, R2, P1, P2, Q, roi1, roi2 = cv2.stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, (640, 480), R, T, alpha = rectify_scale)

left_maps = cv2.initUndistortRectifyMap(cameraMatrix1, distCoeffs1, R1, P1, (640, 480), cv2.CV_16SC2)
right_maps = cv2.initUndistortRectifyMap(cameraMatrix2, distCoeffs2, R2, P2, (640, 480), cv2.CV_16SC2)

# Assuming you have left01.jpg and right01.jpg that you want to rectify
lFrame = cv2.imread('images/left01.jpg')
rFrame = cv2.imread('images/right01.jpg')

left_img_remap = cv2.remap(lFrame, left_maps[0], left_maps[1], cv2.INTER_LANCZOS4)
right_img_remap = cv2.remap(rFrame, right_maps[0], right_maps[1], cv2.INTER_LANCZOS4)

for line in range(0, int(right_img_remap.shape[0] / 20)):
    left_img_remap[line * 20, :] = (0, 0, 255)
    right_img_remap[line * 20, :] = (0, 0, 255)

cv2.imshow('winname', np.hstack([left_img_remap, right_img_remap]))
cv2.waitKey(0)
exit(0)

上面的输出是下图
enter image description here

如您所见,图像未校正!

题:

>代码有什么问题?

解决方法:

我找不到我做错了什么导致了错误的答案,但是对于它值得我找到了可以解决更多问题的解决方案!
我遇到了StereoVision库,并且考虑到它的文档水平较低,因此我设法获取/编写了以下可校准和纠正OK的快照.

import cv2
import os.path
import numpy as np
from stereovision.calibration import StereoCalibrator, StereoCalibration
from stereovision.blockmatchers import StereoBM, StereoSGBM

calib_dir = 'data/config/calibration'
if(not os.path.exists(calib_dir)):
    calibrator = StereoCalibrator(9, 6, 2, (480, 640))
    for idx in range(1, 14):
        calibrator.add_corners((cv2.imread('images/left%02d.jpg' %idx), cv2.imread('images/right%02d.jpg' %idx)))

    calibration = calibrator.calibrate_cameras()
    print "Calibation error:", calibrator.check_calibration(calibration)
    calibration.export(calib_dir)

calibration = StereoCalibration(input_folder=calib_dir)

if True:
    block_matcher = StereoBM()
else:
    block_matcher = StereoSGBM()

for idx in range(1, 14):
    image_pair = (cv2.imread('images/left%02d.jpg' %idx), cv2.imread('images/right%02d.jpg' %idx))
    rectified_pair = calibration.rectify(image_pair)
    disparity = block_matcher.get_disparity(rectified_pair)
    norm_coeff = 255 / disparity.max()
    cv2.imshow('Disparity %02d' %idx, disparity * norm_coeff / 255)

    for line in range(0, int(rectified_pair[0].shape[0] / 20)):
        rectified_pair[0][line * 20, :] = (0, 0, 255)
        rectified_pair[1][line * 20, :] = (0, 0, 255)

    cv2.imshow('Rect %02d' %idx, np.hstack(rectified_pair))
    cv2.waitKey()

以下是我在问题中张贴的同一张图片得到纠正的结果.
enter image description here
虽然用于计算视差图,但它需要调整其参数(程序包提供了一个工具),但可以完成工作:)

标签:video-processing,python,opencv,image-processing
来源: https://codeday.me/bug/20191009/1878628.html