其他分享
首页 > 其他分享> > 如何纠正这个Damerau-Levenshtein实现中的错误?

如何纠正这个Damerau-Levenshtein实现中的错误?

作者:互联网

我又回来了另一个冗长的问题.已经尝试了许多基于Python的Damerau-Levenshtein
编辑距离实现,I finally found the one listed below作为editdistance_reference().它
似乎提供了正确的结果,似乎有一个有效的实施.

所以我开始将代码转换为Cython.在我的测试数据上,参考方法设法提供结果
11,000个比较(对于12个字母长的单词对),而Cythonized方法完成
每秒200,000次比较.可悲的是,结果是不正确的:当你看到变量thisrow时
我打印出来进行调试,我的版本充满了它,无论我投入哪些数据,
而参考输出显示另一张图片.例如,测试’helo’对’世界’
产生以下输出(ED标记我的功能,EDR是正确工作的参考):

来自editdistance():

#ED  A [0, 0, 0, 0, 0, 1]
#ED  B [1, 0, 0, 0, 0, 1]
#ED  B [1, 1, 0, 0, 0, 1]
#ED  B [1, 1, 1, 0, 0, 1]
#ED  B [1, 1, 1, 1, 0, 1]
#ED  B [1, 1, 1, 1, 1, 1]

#ED  A [0, 0, 0, 0, 0, 2]
#ED  B [1, 0, 0, 0, 0, 2]
#ED  B [1, 1, 0, 0, 0, 2]
#ED  B [1, 1, 1, 0, 0, 2]
#ED  B [1, 1, 1, 1, 0, 2]
#ED  B [1, 1, 1, 1, 1, 2]

#ED  A [0, 0, 0, 0, 0, 3]
#ED  B [1, 0, 0, 0, 0, 3]
#ED  B [1, 1, 0, 0, 0, 3]
#ED  B [1, 1, 1, 0, 0, 3]
#ED  B [1, 1, 1, 1, 0, 3]
#ED  B [1, 1, 1, 1, 1, 3]

#ED  A [0, 0, 0, 0, 0, 4]
#ED  B [1, 0, 0, 0, 0, 4]
#ED  B [1, 1, 0, 0, 0, 4]
#ED  B [1, 1, 1, 0, 0, 4]
#ED  B [1, 1, 1, 1, 0, 4]
#ED  B [1, 1, 1, 1, 1, 4]

来自editdistance_reference():

#EDR A [0, 0, 0, 0, 0, 1]
#EDR B [1, 0, 0, 0, 0, 1]
#EDR B [1, 2, 0, 0, 0, 1]
#EDR B [1, 2, 3, 0, 0, 1]
#EDR B [1, 2, 3, 4, 0, 1]
#EDR B [1, 2, 3, 4, 5, 1]

#EDR A [0, 0, 0, 0, 0, 2]
#EDR B [2, 0, 0, 0, 0, 2]
#EDR B [2, 2, 0, 0, 0, 2]
#EDR B [2, 2, 3, 0, 0, 2]
#EDR B [2, 2, 3, 4, 0, 2]
#EDR B [2, 2, 3, 4, 5, 2]

#EDR A [0, 0, 0, 0, 0, 3]
#EDR B [3, 0, 0, 0, 0, 3]
#EDR B [3, 3, 0, 0, 0, 3]
#EDR B [3, 3, 3, 0, 0, 3]
#EDR B [3, 3, 3, 3, 0, 3]
#EDR B [3, 3, 3, 3, 4, 3]

#EDR A [0, 0, 0, 0, 0, 4]
#EDR B [4, 0, 0, 0, 0, 4]
#EDR B [4, 4, 0, 0, 0, 4]
#EDR B [4, 4, 4, 0, 0, 4]
#EDR B [4, 4, 4, 4, 0, 4]
#EDR B [4, 4, 4, 4, 4, 4]

我必须非常愚蠢,因为错误可能是那些非常明显的事情之一.但我似乎无法找到它.

还有第二个问题:我为三个阵列twoago,oneago和thisrow提供了malloc空间,
然后他们以循环方式交换.当我试图释放(twoago)等等时,我得到了一个
glibc抱怨双重自由或腐败的地方.我用Google搜索了;可能是那个
指针交换业务使glibc有点晕,所以它变得无法正确释放内存?

下面我首先列出进行编译所需的setup.py
(/path/to/python3.1 ./setup.py build_ext –inplace),然后编辑距离代码正确,所以感兴趣
人们发现它更容易复制.

还有一件事:这是用Python3.1运行的;一个有趣的事情是,我们确实在* .pyx文件中
裸unicode字符串,但print仍然是一个语句,而不是一个函数.

是的,我知道这里有很多代码要粘贴,但事情就是代码根本就不能运行了
把它砍得太厉害了.我相信除了editdistance()之外的所有方法都能正常工作,但感觉自由
指出你认为的任何问题.

setup.py:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

setup(
  name            = 'cython_dameraulevenshtein',
  ext_modules     = [
    Extension( 'cython_dameraulevenshtein', [ 'cython_dameraulevenshtein.pyx', ] ), ],
  cmdclass        = {
    'build_ext': build_ext }, )

cython_dameraulevenshtein.pyx(一直滚动到最后看到有趣的东西):

############################################################################################################
cdef extern from "stdlib.h":
  ctypedef  unsigned int size_t
  void      *malloc(size_t size)
  void      *realloc( void *ptr, size_t size )
  void      free(void *ptr)

#-----------------------------------------------------------------------------------------------------------
cdef inline unsigned int _minimum_of_two_uints( unsigned int a, unsigned int b ):
  if a < b: return a
  return b

#-----------------------------------------------------------------------------------------------------------
cdef inline unsigned int _minimum_of_three_uints( unsigned int a, unsigned int b, unsigned int c ):
  if a < b:
    if c < a:
      return c
    return a
  if c < b:
    return c
  return b

#-----------------------------------------------------------------------------------------------------------
cdef inline int _warp( unsigned int limit, int value ):
  return value if value >= 0 else limit + value

############################################################################################################
# ARRAYS THAT SAY SIZE ;-)
#-----------------------------------------------------------------------------------------------------------
cdef class Array_of_unsigned_int:
  cdef unsigned int *data
  cdef unsigned int length

  #---------------------------------------------------------------------------------------------------------
  def __cinit__( self, unsigned int length, fill_value = None ):
    self.length = length
    self.data   = <unsigned int *>malloc( length * sizeof( unsigned int ) )  ###OBS### must check malloc doesn't return NULL pointer
    if fill_value is not None:
      self.fill( fill_value )

  #---------------------------------------------------------------------------------------------------------
  cdef fill( self, unsigned int value ):
    cdef unsigned int idx
    cdef unsigned int *d    = self.data
    for idx from 0 <= idx < self.length:
      d[ idx ] = value

  #---------------------------------------------------------------------------------------------------------
  cdef resize( self, unsigned int length ):
    self.data   = <unsigned int *>realloc( self.data, length * sizeof( unsigned int ) )  ###OBS### must check realloc doesn't return NULL pointer
    self.length = length

  #---------------------------------------------------------------------------------------------------------
  def free( self ):
    """Always remember the milk: Free up memory."""
    free( self.data )  ###OBS### should free memory here

  #---------------------------------------------------------------------------------------------------------
  def as_list( self ):
    """Return the array as a Python list."""
    R                       = []
    cdef unsigned int idx
    cdef unsigned int *d    = self.data
    for idx from 0 <= idx < self.length:
      R.append( d[ idx ] )
    return R


############################################################################################################
# CONVERTING UNICODE TO CHARACTER IDs (CIDs)
#---------------------------------------------------------------------------------------------------------
cdef unsigned int _UMX_surrogate_lower_bound    = 0x10000
cdef unsigned int _UMX_surrogate_upper_bound    = 0x10ffff
cdef unsigned int _UMX_surrogate_hi_lower_bound = 0xd800
cdef unsigned int _UMX_surrogate_hi_upper_bound = 0xdbff
cdef unsigned int _UMX_surrogate_lo_lower_bound = 0xdc00
cdef unsigned int _UMX_surrogate_lo_upper_bound = 0xdfff
cdef unsigned int _UMX_surrogate_foobar_factor  = 0x400

#---------------------------------------------------------------------------------------------------------
cdef Array_of_unsigned_int _cids_from_text( text ):
  """Givn a ``text`` either as a Unicode string or as a ``bytes`` or ``bytearray``, return an instance of
  ``Array_of_unsigned_int`` that enumerates either the Unicode codepoints of each character or the value of
  each byte. Surrogate pairs will be condensed into single values, so on narrow Python builds the length of
  the array returned may be less than ``len( text )``."""
  #.........................................................................................................
  # Make sure ``text`` is either a Unicode string (``str``) or a ``bytes``-like thing:
  is_bytes = isinstance( text, ( bytes, bytearray, ) )
  assert is_bytes or isinstance( text, str ), '#121'
  #.........................................................................................................
  # Whether it is a ``str`` or a ``bytes``, we know the result can only have at most as many elements as
  # there are characters in ``text``, so we can already reserve that much space (in the case of a Unicode
  # text, there may be fewer CIDs if there happen to be surrogate characters):
  cdef unsigned int           length  = <unsigned int>len( text )
  cdef Array_of_unsigned_int  R       = Array_of_unsigned_int( length )
  #.........................................................................................................
  # If ``text`` is empty, we can return an empty array right away:
  if length == 0: return R
  #.........................................................................................................
  # Otherwise, prepare to copy data:
  cdef unsigned int idx               = 0
  #.........................................................................................................
  # If ``text`` is a ``bytes``-like thing, use simplified processing; we just have to copy over all byte
  # values and are done:
  if is_bytes:
    for idx from 0 <= idx < length:
      R.data[ idx ] = <unsigned int>text[ idx ]
    return R
  #.........................................................................................................
  cdef unsigned int cid               = 0
  cdef bool         is_surrogate      = False
  cdef unsigned int hi                = 0
  cdef unsigned int lo                = 0
  cdef unsigned int chr_count         = 0
  #.........................................................................................................
  # Iterate over all indexes in text:
  for idx from 0 <= idx < length:
    #.......................................................................................................
    # If we met with a surrogate CID in the last cycle, then that was a high surrogate CID, and the
    # corresponding low CID is on the current position. Having both, we can compute the intended CID
    # and reset the flag:
    if is_surrogate:
      lo = <unsigned int>ord( text[ idx ] )
      # IIRC, this formula was documented in Unicode 3:
      cid = ( ( hi - _UMX_surrogate_hi_lower_bound ) * _UMX_surrogate_foobar_factor
            + ( lo - _UMX_surrogate_lo_lower_bound ) + _UMX_surrogate_lower_bound )
      is_surrogate = False
    #.......................................................................................................
    else:
      # Otherwise, we retrieve the CID from the current position:
      cid = <unsigned int>ord( text[ idx ] )
      #.....................................................................................................
      if _UMX_surrogate_hi_lower_bound <= cid <= _UMX_surrogate_hi_upper_bound:
        # If this CID is a high surrogate CID, set ``hi`` to this value and set a flag so we'll come back
        # in the next cycle:
        hi                = cid
        is_surrogate      = True
        continue
    #.......................................................................................................
    R.data[ chr_count ] = cid
    chr_count     += 1
  #.........................................................................................................
  # Surrogate CIDs take up two characters but end up as a single resultant CID, so the return value may
  # have fewer elements than the naive string length indicated; in this case, we want to free some memory
  # and correct array length data:
  if chr_count != length:
    R.resize( chr_count )
  #.........................................................................................................
  return R

#---------------------------------------------------------------------------------------------------------
def cids_from_text( text ):
  cdef Array_of_unsigned_int c_R  =_cids_from_text( text )
  R                               = c_R.as_list()
  c_R.free() ###OBS### should free memory here
  return R


############################################################################################################
# SECOND-ORDER SIMILARITY
#-----------------------------------------------------------------------------------------------------------
cpdef float similarity( char *a, char *b ):
  """Given two byte strings ``a`` and ``b``, return their Damerau-Levenshtein similarity as a float between
  0.0 and 1.1. Similarity is computed as ``1 - relative_editdistance( a, b )``, so a result of ``1.0``
  indicates identity, while ``0.0`` indicates complete dissimilarity."""
  return 1.0 - relative_editdistance( a, b )

#-----------------------------------------------------------------------------------------------------------
cpdef float relative_editdistance( char *a, char *b ):
  """Given two byte strings ``a`` and ``b``, return their relative Damerau-Levenshtein distance. The return
  value is a float between 0.0 and 1.0; it is calculated as the absolute edit distance, divided by the
  length of the longer string. Therefore, ``0.0`` indicates identity, while ``1.0`` indicates complete
  dissimilarity."""
  cdef int length = max( len( a ), len( b ) )
  if length == 0: return 0.0
  return editdistance( a, b ) / <float>length

############################################################################################################
# EDIT DISTANCE
#-----------------------------------------------------------------------------------------------------------
cpdef unsigned int editdistance( text_a, text_b ):
  """Given texts as Unicode strings or ``bytes`` / ``bytearray`` objects, return their absolute
  Damerau-Levenshtein distance. Each deletion, insertion, substitution, and transposition is counted as one
  difference, so the edit distance between ``abc`` and ``ab``, ``abcx``, ``abx``, ``acb``, respectively, is
  ``1``."""
  #.........................................................................................................
  # This should be fast in Python, as it can (and probably is) implemented by doing an identity check in
  # the case of ``bytes`` and ``str`` objects:
  if text_a == text_b: return 0
  #.........................................................................................................
  # Convert Unicode text to C array of unsigned integers:
  cdef Array_of_unsigned_int a  = _cids_from_text( text_a )
  cdef Array_of_unsigned_int b  = _cids_from_text( text_b )
  R                             = c_editdistance( a, b )
  #.........................................................................................................
  # Always remember the milk:
  a.free()
  b.free()
  #.........................................................................................................
  return R

#-----------------------------------------------------------------------------------------------------------
cdef unsigned int c_editdistance( Array_of_unsigned_int cids_a, Array_of_unsigned_int cids_b ):
  # Conceptually, this is based on a len(a) + 1 * len(b) + 1 matrix.
  # However, only the current and two previous rows are needed at once,
  # so we only store those.
  #.........................................................................................................
  # This shortcut is pretty useless if comparison is not very fast; therefore, it is done in the function
  # that deals with the Python objects, q.v.
  # if cids_a.equals( cids_b ): return 0
  #.........................................................................................................
  cdef unsigned int a_length            = cids_a.length
  cdef unsigned int b_length            = cids_b.length
  #.........................................................................................................
  # Another shortcut: if one of the texts is empty, then the edit distance is trivially the length of the
  # other text. This also works for two empty texts, but those have already been taken care of by the
  # previous shortcut:
  #.........................................................................................................
  if a_length == 0: return b_length
  if b_length == 0: return a_length
  #.........................................................................................................
  cdef unsigned int row_length          = b_length   + 1
  cdef unsigned int row_length_1        = row_length - 1
  cdef unsigned int row_bytecount       = sizeof( unsigned int ) * row_length
  cdef unsigned int *oneago             = <unsigned int *>malloc( row_bytecount ) ###OBS### must check malloc doesn't return NULL pointer
  cdef unsigned int *twoago             = <unsigned int *>malloc( row_bytecount ) ###OBS### must check malloc doesn't return NULL pointer
  cdef unsigned int *thisrow            = <unsigned int *>malloc( row_bytecount ) ###OBS### must check malloc doesn't return NULL pointer
  cdef unsigned int idx                 = 0
  cdef unsigned int idx_a               = 0
  cdef unsigned int idx_b               = 0
  cdef          int idx_a_1_text        = 0
  cdef          int idx_b_1_row         = 0
  cdef          int idx_b_2_row         = 0
  cdef          int idx_b_1_text        = 0
  cdef unsigned int deletion_cost       = 0
  cdef unsigned int addition_cost       = 0
  cdef unsigned int substitution_cost   = 0
  #.........................................................................................................
  # Equivalent of ``thisrow = list( range( 1, b_length + 1 ) ) + [ 0 ]``:
  #print( '#305', cids_a.as_list(), cids_b.as_list(), a_length, b_length, row_length, row_length_1 )
  for idx from 1 <= idx < row_length:
    thisrow[ idx - 1 ] = idx
  thisrow[ row_length - 1 ] = 0
  #.........................................................................................................
  for idx_a from 0 <= idx_a < a_length:
    idx_a_1_text      = _warp(   a_length, idx_a - 1 )
    twoago, oneago = oneago, thisrow
    #.......................................................................................................
    # Equivalent of ``thisrow = [ 0 ] * b_length + [ idx_a + 1 ]``:
    for idx from 0 <= idx < row_length_1:
      thisrow[ idx ] = 0
    thisrow[ row_length - 1 ] = idx_a + 1
    #.......................................................................................................
    # some diagnostic output:
    x = []
    for idx from 0 <= idx < row_length: x.append( thisrow[ idx ] )
    print
    print '#ED  A', x
    #.......................................................................................................
    for idx_b from 0 <= idx_b < b_length:
      #.....................................................................................................
      idx_b_1_row       = _warp( row_length, idx_b - 1 )
      idx_b_1_text      = _warp(   b_length, idx_b - 1 )
      #.....................................................................................................
      assert 0 <= idx_b_1_row  < row_length, ( '#323', idx_b_1_row, )
      assert 0 <= idx_a_1_text <   a_length, ( '#324', idx_a_1_text, )
      assert 0 <= idx_b_1_text <   b_length, ( '#325', idx_b_1_text, )
      #.....................................................................................................
      deletion_cost     = oneago[  idx_b       ] + 1
      addition_cost     = thisrow[ idx_b_1_row ] + 1
      substitution_cost = oneago[  idx_b_1_row ] + ( 1 if    cids_a.data[ idx_a ]
                                                          != cids_b.data[ idx_b ] else 0 )
      thisrow[ idx_b ]  = _minimum_of_three_uints( deletion_cost, addition_cost, substitution_cost )
      #.....................................................................................................
      # Transpositions:
      if (  idx_a > 0
        and idx_b > 0
        and cids_a.data[ idx_a        ] == cids_b.data[ idx_b_1_text ]
        and cids_a.data[ idx_a_1_text ] == cids_b.data[ idx_b        ]
        and cids_a.data[ idx_a        ] != cids_b.data[ idx_b        ] ):
        #...................................................................................................
        idx_b_2_row       = _warp( row_length, idx_b - 2 )
        assert 0 <= idx_b_2_row  < row_length, ( '#340', idx_b_2_row, )
        thisrow[ idx_b ]  = _minimum_of_two_uints( thisrow[ idx_b ], twoago[ idx_b_2_row ] + 1 )
      #.....................................................................................................
      # some diagnostic output:
      x = []
      for idx from 0 <= idx < row_length: x.append( thisrow[ idx ] )
      print '#ED  B', x
  #.........................................................................................................
  # Here, ``b_length - 1`` can't become negative, since we already tested for ``b_length == 0`` in the
  # shortcut above:
  cdef unsigned int R = thisrow[ b_length - 1 ]
  #.........................................................................................................
  # Always remember the milk:
  # BUG: Activating below lines leads to glibc failing with ``double free or corruption``
  #free( twoago )
  #free( oneago )
  #free( thisrow )e
  #.........................................................................................................
  return R

#-----------------------------------------------------------------------------------------------------------
def editdistance_reference( text_a, text_b ):
  """This method is believed to compute a correct Damerau-Levenshtein edit distance, with deletions,
  insertions, substitutions, and transpositions. Do not touch it; it is here to validate results returned
  from the above method. Code adapted from
  http://mwh.geek.nz/2009/04/26/python-damerau-levenshtein-distance"""
  # Conceptually, the implementation is based on a ``( len( seq1 ) + 1 ) * ( len( seq2 ) + 1 )`` matrix.
  # However, only the current and two previous rows are needed at once, so we only store those. Python
  # lists wrap around for negative indices, so we put the leftmost column at the *end* of the list. This
  # matches with the zero-indexed strings and saves extra calculation.
  b_length  = len( text_b )
  oneago    = None
  thisrow   = list( range( 1, b_length + 1 ) ) + [ 0 ]
  for idx_a in range( len( text_a ) ):
    twoago, oneago, thisrow = oneago, thisrow, [ 0 ] * b_length + [ idx_a + 1 ]
    #.......................................................................................................
    # some diagnostic output:
    print
    print '#EDR A', thisrow
    #.......................................................................................................
    for idx_b in range( b_length ):
      deletion_cost     = oneago[  idx_b     ] + 1
      addition_cost     = thisrow[ idx_b - 1 ] + 1
      substitution_cost = oneago[  idx_b - 1 ] + ( text_a[ idx_a ] != text_b[ idx_b ] )
      thisrow[ idx_b ]  = min( deletion_cost, addition_cost, substitution_cost )
      if (  idx_a > 0
        and idx_b > 0
        and text_a[ idx_a     ] == text_b[ idx_b - 1 ]
        and text_a[ idx_a - 1 ] == text_b[ idx_b     ]
        and text_a[ idx_a     ] != text_b[ idx_b     ] ):
        thisrow[ idx_b ] = min( thisrow[ idx_b ], twoago[ idx_b - 2 ] + 1 )
      #.....................................................................................................
      # some diagnostic output:
      print '#EDR B', thisrow
      #.....................................................................................................
  return thisrow[ len( text_b ) - 1 ]

编辑我也发布此文本到pastebin和Cython列表.

解决方法:

做一些初级调试.您知道在标记为#ED B的第二个输出行中出错了.错误的值似乎表明它在早期找到了一个编辑,并且再也找不到了.这可能是因为其中一个min()args以某种方式被限制在1.打印deletion_cost,substitution_cost,addition_cost ……哪个错了?为什么这是错的?打印输入文本值.暂时禁用转置部分以查看是否会导致问题消失.检查并重新检查_warp caper(如果我看过一个狡猾的霍比特噱头)及其用法.如果将“aaaaa”与“aaaaa”进行比较会发生什么? “qwerty”和“qwerty”? “xxxxx”和“yyyyy”?是否所有字节,bytearray和str输入都会出现问题?

免费问题:我怀疑是腐败,而不是头晕目眩.打印三个阵列;他们的内容是否符合预期?尝试一次启用free()一个数组 – 全部坏了吗?只有一个?哪一个?

一些关于内存管理的内容:您可能希望阅读this并考虑使用特定于Python的例程而不是malloc / free.如果有代理人缩小您的阵列似乎超过顶部.

更新:遵循我自己的建议.删除成本已经填满. “oneago”与“thisrow”相同.问题导致错误的答案和加倍( – !没有损坏! – )自由:指针的圆形洗牌不是循环的.

# twoago, oneago = oneago, thisrow ### BUG ###
twoago, oneago, thisrow = oneago, thisrow, twoago ### FIXED ###

更新2:[评论容量太小]没有mojo,只是简单普通的调试spadework,正如我所建议的那样. “专注于我的修复”不是“超级可读”.参考代码确实为每个传递创建了一个新的列表,它可以做,因为thisrow指的是从前一个传递中没有传递的任何内容.它不需要这样做,实际上除了第一个和最后一个元素之外的初始化可以由随机数组成,并且只在那里填写列表以便它可以被索引到而不是作为一些非附加到-tricksy实现呢.因此,你可以盲目地模仿“参考实现”,代价是额外(浪费)malloc / free,或者你可以忽略特定于Python的实现细节,并仅将参考实现用作大概正确答案的来源.然后你可以接受我的修复,然后通过砍掉thisrow数组的大部分初始化来继续节省时间.

更新3:这是您的替代参考实现.它最初分配3行,以避免在外部循环内创建列表的开销.它还避免了除了thisrow的最后一个元素之外的所有内容的不必要的初始化.这简化了C/C++ython的翻译.

def damlevref2(seq1, seq2):
    # For Python 2.x as was the original.
    # Appears to work on Python 1.5.2 as well :-)
    seq2len = len(seq2)
    twoago = [-777] * (seq2len + 1) # pseudo-malloc; any old rubbish will do
    oneago = [-666] * (seq2len + 1) # ditto
    thisrow = range(1, seq2len + 1) + [0]
    for x in xrange(len(seq1)):
        twoago, oneago, thisrow = oneago, thisrow, twoago # circular "pointer" shuffle
        thisrow[-1] = x + 1
        for y in xrange(seq2len):
            delcost = oneago[y] + 1
            addcost = thisrow[y - 1] + 1
            subcost = oneago[y - 1] + (seq1[x] != seq2[y])
            thisrow[y] = min(delcost, addcost, subcost)
            if (x > 0 and y > 0 and seq1[x] == seq2[y - 1]
                and seq1[x-1] == seq2[y] and seq1[x] != seq2[y]):
                thisrow[y] = min(thisrow[y], twoago[y - 2] + 1)
    return thisrow[seq2len - 1]    

标签:edit-distance,python,python-3-x,cython,levenshtein-distance
来源: https://codeday.me/bug/20191006/1859231.html