其他分享
首页 > 其他分享> > Power Network(多源多汇的最大流)

Power Network(多源多汇的最大流)

作者:互联网

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= p max(u) of power, may consume an amount 0 <= c(u) <= min(s(u),c max(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= l max(u,v) of power delivered by u to v. Let Con=Σ uc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

An example is in figure 1. The label x/y of power station u shows that p(u)=x and p max(u)=y. The label x/y of consumer u shows that c(u)=x and c max(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and l max(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.
Input
There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of l max(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of p max(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of c max(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.
Output
For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.
Sample Input
2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4
Sample Output
15
6
Hint
The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.
题意:
给几个发电站,给几个消耗站,再给几个转发点。
发电站只发电,消耗站只消耗电,转发点只是转发电,再给各个传送线的传电能力。
问你消耗站能获得的最多电是多少。

思路:这题建图是比较显然的,超源点和发电战之间连边,容量是发电量,消耗站和超汇点之间连边,容量是消耗量,然后输电线本来就是边,这样就建好图了,剩下的就是套最大流的模板了。
这道题让我学到了遇到多源多汇点怎么建图。
因为这题需要添加超级源点和超级汇点,所以我没用链式前向星法存图,而是用了邻接矩阵存图。
代码:

#include <iostream>
#include<cstdio>
#include <cstdlib>
#include <cstring>
#include<queue>
#include<algorithm>
#define MAX 999999
 
using namespace std;
 
int map_[200][200];
int dis[200];
int bfs(int s,int t)
{
    int now;
    memset(dis,-1,sizeof (dis));
    dis[s] = 0;
    queue<int> que;
    que.push(s);
 
    while(!que.empty())
    {
        now = que.front();
        que.pop();
 
        for (int i = 0;i <= t;i++)
            if (dis[i] == -1 && map_[now][i] > 0)
            {
                dis[i] = dis[now] + 1;
 
                que.push(i);
            }
    }
 
    if (dis[t] != -1)
        return 1;
 
    return 0;
}
 
int dinic(int s,int t,int x)
{
    if (s == t)
        return x;
 
    int tmp = x;
    for (int i = 0;i <= t;i++)
    {
        if (dis[i] == dis[s] + 1 && map_[s][i] > 0)
        {
            int imin = dinic(i,t,min(map_[s][i],x));
 
            map_[s][i] -= imin;
            map_[i][s] += imin;
            x -= imin;
        }
    }
 
    return tmp - x;
}
 
int main()
{
    int n,np,nc,m;
 
    while (~scanf ("%d%d%d%d",&n,&np,&nc,&m))
    {
        int i,k;
        int u,v,c;
        memset(map_,0,sizeof(map_));
        for (i = 0;i < m;i++)
        {
            scanf(" (%d,%d)%d",&u,&v,&c);
            map_[u + 1][v + 1] += c;    //0是超级源点,其他点后移
        }
 
         for(i = 0;i < np;i++)
        {
            scanf(" (%d)%d",&v,&c);
            map_[0][v + 1] += c;
        }
 
        for(i = 0;i < nc;i++)
        {
            scanf(" (%d)%d",&u,&c);
            map_[u + 1][n + 1] += c;
        }
 
        int ans = 0;
 
        while (bfs(0,n + 1))
            ans += dinic(0,n + 1,MAX);
        printf ("%d\n",ans);
    }
    return 0;
}

标签:map,Network,power,int,多汇,network,include,多源,dis
来源: https://blog.csdn.net/qq_44238714/article/details/100831250