其他分享
首页 > 其他分享> > HBase的二级索引

HBase的二级索引

作者:互联网

使用HBase存储中国好声音数据的案例,业务描述如下: 为了能高效的查询到我们需要的数据,我们在RowKey的设计上下了不少功夫,因为过滤RowKey或者根据RowKey查询数据的效率是最高的,我们的RowKey的设计是:UserID + CreateTime + FileID,那么我们在HBase中的数据格式如下: 每一行数据中包含两个Column:f:c和f:n 我们在查询的时候还是用了SingleColumnValueFilter这个Filter来过滤单个的Column的Value的值,我们说如果在海量数据的时候使用这个SingleColumnValueFilter来过滤数据的话是非常耗时的事情,那么现在问题来了: 问题: 假设针对这张sound的表,我们需要查询包含“中国好声音”以及包含“综艺”的数据,也就是说我们的业务查询是: 2个条件同时输入find(“中国好声音”,“综艺”) 这个时候我们该怎么查询呢? 解决方案: 首先,我们现在的查询条件中没有对RowKey的过滤了,如果我们直接使用SingleColumnValueFilter这个Filter来过滤查询数据的话是可以达到目的,但是非常的耗时,所以我们不能使用这种方式 那么,我们现在就使用HBase中的二级索引来解决这个问题,我们先不解释二级索引是什么,我们先看下解决上面问题的过程,如下: 第一步:创建两张HBase表 第一张HBase表的RowKey是数据中的Name字段的值,这张表可以有不定数量的Column,每一个Column的值就是sound表的RowKey(和Name对应的RowKey),这张表我们称之为name_indexer表。create 'name_indexer','f' 第二张HBase表的RowKey是数据中的Category字段的值,这张表可以有不定数量的Column,每一个Column的值就是sound表的RowKey(和Category对应的RowKey),这张表我们称之为category_indexer表。create 'category_indexer','f'   第二步:将sound中的数据导入到name_indexer和category_indexer两张表中 使用Spark程序来实现索引表数据的导入,
import org.apache.hadoop.hbase.client.{ConnectionFactory, Put, Scan}
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.{HBaseConfiguration, TableName}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession

/**
  *  使用Spark来建立HBase中表sound的二级索引
  */
object MyIndexBuilder {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .appName("MyIndexBuilder")
      .master("local")
      .getOrCreate()

    // 1、创建HBaseContext
    val configuration = HBaseConfiguration.create()
    configuration.set("hbase.zookeeper.quorum", "master,slave1,slave2")
    val hBaseContext = new HBaseContext(spark.sparkContext, configuration)

    // 2、读取HBase表sound中的f:n和f:c两个列的值以及他们对应的rowKey的值
    // 并且需要区分开是哪一个列的值
    val soundRDD = hBaseContext.hbaseRDD(TableName.valueOf("sound"), new Scan())
    val indexerRDD: RDD[((String, Array[Byte]), ImmutableBytesWritable)] = soundRDD.flatMap { case (byteRowKey, result) =>
      val nameValue = result.getValue(Bytes.toBytes("f"), Bytes.toBytes("n"))
      val categoryValue = result.getValue(Bytes.toBytes("f"), Bytes.toBytes("c"))
      // 区分开是哪一个列的值,使用key来区分
      // 返回key是(tableName,列值), value是这个列对应的rowKey的值
      Seq((("name_indexer", nameValue), byteRowKey), (("category_indexer", categoryValue), byteRowKey))
    }

    // 3、按照key进行分组,拿到相同列值对应的所有的rowKeys(因为在原表sound中多个rowKey的值可能会对应着相同的列值)
    val groupedIndexerRDD: RDD[((String, Array[Byte]), Iterable[ImmutableBytesWritable])] = indexerRDD.groupByKey()

    // 4、将不同的列值以及对应的rowKeys写入到相对应的indexer表中
    groupedIndexerRDD.foreachPartition { partitionIterator =>
      val conf = HBaseConfiguration.create()
      conf.set("hbase.zookeeper.quorum", "master,slave1,slave2")
      val conn = ConnectionFactory.createConnection(conf)

      val nameIndexerTable = conn.getTable(TableName.valueOf("name_indexer"))
      val categoryIndexerTable = conn.getTable(TableName.valueOf("category_indexer"))

      try {
        val nameIndexerTablePuts = new util.ArrayList[Put]()
        val categoryIndexerTablePuts = new util.ArrayList[Put]()
        partitionIterator.map { case ((tableName, indexerValue), rowKeys) =>
          val put = new Put(indexerValue) // 将列值作为索引表的rowKey
          rowKeys.foreach(rowKey => {
            put.addColumn(Bytes.toBytes("f"), null, rowKey.get())
          })
          if (tableName.equals("name_indexer")) {
            nameIndexerTablePuts.add(put) // 需要写入到表name_indexer中的数据
          } else {
            categoryIndexerTablePuts.add(put) // 需要写入到表category_indexer中的数据
          }
        }
        nameIndexerTable.put(nameIndexerTablePuts)
        categoryIndexerTable.put(categoryIndexerTablePuts)
      } finally {
        nameIndexerTable.close()
        categoryIndexerTable.close()
        conn.close()
      }
    }

    spark.stop()
  }
}

  

  第三步:查询结果 我们先从name_indexer这张表中按照RowKey查询属于“中国好声音”的记录,这些记录中的所有的列的值就是需要在sound中查询的RowKey的值 然后从category_indexer这张表中按照RowKey查询属于“综艺”的记录,这些记录中的所有的列的值就是需要在sound中查询的RowKey的值 最后将上面两步查询出来的结果做一个合并,就是将查询出来的结果做一次去重,得到了所有在sound中符合需求的RowKey,然后在根据这些RowKey去sound表中查询相应的数据 我们每一步查询都是根据HBase中的一级索引RowKey来查询的,所以查询速度会非常的快
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.CompareFilter;
import org.apache.hadoop.hbase.filter.RowFilter;
import org.apache.hadoop.hbase.filter.SubstringComparator;
import org.apache.hadoop.hbase.util.Bytes;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

public class SecondaryIndexSearcher {
    public static void main(String[] args) throws IOException {
        Configuration config = HBaseConfiguration.create();
        config.set("hbase.zookeeper.quorum", "master,slave1,slave2");
        try(Connection connection = ConnectionFactory.createConnection(config)) {
            Table nameIndexer = connection.getTable(TableName.valueOf("name_indexer"));
            Table categoryIndexer = connection.getTable(TableName.valueOf("category_indexer"));
            Table sound = connection.getTable(TableName.valueOf("sound"));

            // 1、先从表name_indexer中找到rowKey包含“中国好声音”对应的所有的column值
            Scan nameIndexerScan = new Scan();
            SubstringComparator nameComp = new SubstringComparator("中国好声音");
            RowFilter nameRowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, nameComp);
            nameIndexerScan.setFilter(nameRowFilter);

            Set<String> soundRowKeySetOne = new HashSet<>();
            ResultScanner rsOne = nameIndexer.getScanner(nameIndexerScan);
            try {
                for (Result r = rsOne.next(); r != null; r = rsOne.next()) {
                    for (Cell cell : r.listCells()) {
                        soundRowKeySetOne.add(Bytes.toString(CellUtil.cloneValue(cell)));
                    }
                }
            } finally {
                rsOne.close();  // always close the ResultScanner!
            }

            // 2、再从表category_indexer中找到rowKey包含“综艺”对应的所有的column值
            Scan categoryIndexerScan = new Scan();
            SubstringComparator categoryComp = new SubstringComparator("综艺");
            RowFilter categoryRowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, categoryComp);
            nameIndexerScan.setFilter(categoryRowFilter);

            Set<String> soundRowKeySetTwo = new HashSet<>();
            ResultScanner rsTwo = categoryIndexer.getScanner(categoryIndexerScan);
            try {
                for (Result r = rsTwo.next(); r != null; r = rsTwo.next()) {
                    for (Cell cell : r.listCells()) {
                        soundRowKeySetTwo.add(Bytes.toString(CellUtil.cloneValue(cell)));
                    }
                }
            } finally {
                rsTwo.close();  // always close the ResultScanner!
            }

            // 3、合并并去重上面两步查询的结果
            soundRowKeySetOne.addAll(soundRowKeySetTwo);

            // 4、根据soundRowKeySetOne中所有的rowKeys去sound表中查询数据
            List<Get> gets = new ArrayList<>();
            for (String rowKey : soundRowKeySetOne) {
                Get get = new Get(Bytes.toBytes(rowKey));
                gets.add(get);
            }
            Result[] results = sound.get(gets);
            for (Result result : results) {
                for (Cell cell : result.listCells()) {
                    System.out.println(Bytes.toString(CellUtil.cloneRow(cell)) + "===> " +
                            Bytes.toString(CellUtil.cloneFamily(cell)) + ":" +
                            Bytes.toString(CellUtil.cloneQualifier(cell)) + "{" +
                            Bytes.toString(CellUtil.cloneValue(cell)) + "}");
                }
            }
        }
    }
}

  

结论: 那么表name_indexer和category_indexer中的RowKey就是我们解决问题的二级索引, 所以二级索引的本质就是:建立各列值与行键之间的映射关系   最后,我们需要知道创建HBase二级索引的方式 1、Spark来实现二级索引的建立 我们前面使用的是Spark来实现二级索引的建立,但是这种方式适用于离线批处理,这些二级索引是每天或者每段时间执行一次的建立的 2、使用HBase的协处理器(coprocessor) 对于如果数据是实时更新的话,则这种离线批处理的方式是不行的,这个时候我们可以使用HBase的协处理器(coprocessor) HBase的协处理器(Coprocessor)的介绍可以参考:https://www.cnblogs.com/small-k/p/9648453.html   3、HBase + Solr其实也是一个二级索引实现,只不过是把二级索引存储在Solr中

标签:二级,org,indexer,索引,RowKey,apache,import,HBase,hbase
来源: https://www.cnblogs.com/tesla-turing/p/11515351.html