其他分享
首页 > 其他分享> > 洛谷 P2939 [USACO09FEB]改造路Revamping Trails 分层图 最短路 dijkstra

洛谷 P2939 [USACO09FEB]改造路Revamping Trails 分层图 最短路 dijkstra

作者:互联网

题目链接:

https://www.luogu.org/problem/P2939

思路来源博客:

https://www.luogu.org/blog/xiaohou/solution-p2939

思路:

1:分层图:根据题意,我们可以发现k<=20的取值范围比较小,所以可以直接用分层图(提示我们要注意观察数据范围,来分析用什么思路去解题)

2:把一个点强行拆分为k个,原图层代表使用0次升级路的机会,其他的图分别表示使用了1次、2次...k次升级路的机会,然后就可以连边了。考虑每层之间的关系,第i层与第i+1层的边的权值为0,等于用掉了一次升级路的机会

3:注意连边时:自己第一次错就错在处理层与层之间连接时,对于每一条边,在一层图上的a端点要和下一层图上的b端点相连,一层图上的端b点要和下一层图上的a端点相连,权值为0,是单向边,从一层图跳到下一层图就代表用掉了一次升级路的机会

4:注意可能存在不用k次升级机会,就可以直接到达终点,因此最后要在每一层的表示终点的节点中,取到达该节点的最小值,即为从1号牧场到第N号牧场所花的最短时间

    ans=d[n];
    for(int i=1;i<=k;i++)
    {
        ans=min(ans,d[n+n*i]);
    }

5:令自己疑惑的是数组的大小,我认为const int maxn=1e4*21+1即可,但是必须开const int maxn=1e4*22+1才可以过,以后注意稍开大一点

6:最后跑一边dijktra

#include <bits/stdc++.h>

using namespace std;
const int maxn=1e4*22+1,inf=0x3f3f3f3f;
int n,m,k,a,b,c,d[maxn],ans;
vector<pair<int,int> >e[maxn];

inline void add_edge(int f,int t,int v)
{
    e[f].push_back(make_pair(t,v));
    e[t].push_back(make_pair(f,v));
    e[f].push_back(make_pair(t+n,0));
    e[t].push_back(make_pair(f+n,0));
}

inline void dijkstra(int s)
{
    memset(d,inf,sizeof(d));
    priority_queue<pair<int,int> >q;
    d[s]=0;
    q.push(make_pair(-d[s],s));
    while(!q.empty())
    {
        int now=q.top().second;
        q.pop();
        for(int i=0;i<e[now].size();i++)
        {
            int v=e[now][i].first;
            if(d[v]>d[now]+e[now][i].second)
            {
                d[v]=d[now]+e[now][i].second;
                q.push(make_pair(-d[v],v));
            }
        }
    }
}

int main()
{
    ios::sync_with_stdio(0);
    cin>>n>>m>>k;
    for(int i=1;i<=m;i++)
    {
        cin>>a>>b>>c;
        for(int j=1;j<=k;j++)
        {
            add_edge(a+n*(j-1),b+n*(j-1),c);
        }
        add_edge(a+n*k,b+n*k,c);
        add_edge(b+n*k,a+n*k,c);
    }
    dijkstra(1);
    ans=d[n];
    for(int i=1;i<=k;i++)
    {
        ans=min(ans,d[n+n*i]);
    }
    cout<<ans<<endl;
    return 0;
}

 

标签:洛谷,int,make,Revamping,push,dijkstra,maxn,pair,now
来源: https://blog.csdn.net/aiwo1376301646/article/details/100691298