机器学习知识点总结
作者:互联网
1、先验概率:根据以往经验分析得到的概率
2、后验概率:基于新的信息,修正先验概率后获得的更接近实际情况的概率估计
3、最大似然估计:寻找能够以较高概率产生观察数据的系统参数
4、目标函数:用设计变量来表示所追求的目标形式(最优化经验风险和结构风险)
5、代价函数:整个训练集上所有样本误差的平均
6、损失函数:计算的是一个样本的误差(损失函数和代价函数是同一个东西)
7、风险函数:损失函数的期望值
8、结构风险:函数类型(次方项),正则化引入的原因,模型复杂度问题
9、经验风险:损失函数中的值,代价函数
10、判别模型:条件模型(条件概率模型),目标函数对应分类的准确率
11、生成模型:联合概率密度分布(增加了先验概率)
标签:总结,知识点,概率,机器,函数,风险,模型,损失,先验概率 来源: https://www.cnblogs.com/tyh666/p/11492109.html