其他分享
首页 > 其他分享> > Spark提交任务Yarn-Cluster模式下任务日志的查看

Spark提交任务Yarn-Cluster模式下任务日志的查看

作者:互联网

前情提要

任务以cluster模式提交命令

Old:

    --name 任务名称 --master yarn-cluster

    该命令已经过时:Warning: Master yarn-cluster is deprecated since 2.0. Please use master "yarn" with specified deploy mode instead.

New:

    --name 任务名称 --master yarn --deploy-mode cluster

使用spark-submit --help查看详细命令说明

本文档最后已经贴上详细说明

 

Yarn-Cluster模式下任务日志的查看方式

1.进入yarn任务管理页面,找到对应的任务id进入该任务详情页

 

2.详情页中点击logs

 

3. Logs页面中包含任务不同阶段的日志,一般任务的输出日志如下图所示:

其它有关容器启动等日志信息也在此页面中可查看

 

 

spark-submit 附录:

Options:

  --master MASTER_URL         spark://host:port, mesos://host:port, yarn, or local.

  --deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") or

                              on one of the worker machines inside the cluster ("cluster")

                              (Default: client).

  --class CLASS_NAME          Your application's main class (for Java / Scala apps).

  --name NAME                 A name of your application.

  --jars JARS                 Comma-separated list of local jars to include on the driver

                              and executor classpaths.

  --packages                  Comma-separated list of maven coordinates of jars to include

                              on the driver and executor classpaths. Will search the local

                              maven repo, then maven central and any additional remote

                              repositories given by --repositories. The format for the

                              coordinates should be groupId:artifactId:version.

  --exclude-packages          Comma-separated list of groupId:artifactId, to exclude while

                              resolving the dependencies provided in --packages to avoid

                              dependency conflicts.

  --repositories              Comma-separated list of additional remote repositories to

                              search for the maven coordinates given with --packages.

  --py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to place

                              on the PYTHONPATH for Python apps.

  --files FILES               Comma-separated list of files to be placed in the working

                              directory of each executor. File paths of these files

                              in executors can be accessed via SparkFiles.get(fileName).

 

  --conf PROP=VALUE           Arbitrary Spark configuration property.

  --properties-file FILE      Path to a file from which to load extra properties. If not

                              specified, this will look for conf/spark-defaults.conf.

 

  --driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: 1024M).

  --driver-java-options       Extra Java options to pass to the driver.

  --driver-library-path       Extra library path entries to pass to the driver.

  --driver-class-path         Extra class path entries to pass to the driver. Note that

                              jars added with --jars are automatically included in the

                              classpath.

 

  --executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).

 

  --proxy-user NAME           User to impersonate when submitting the application.

                              This argument does not work with --principal / --keytab.

 

  --help, -h                  Show this help message and exit.

  --verbose, -v               Print additional debug output.

  --version,                  Print the version of current Spark.

 

 Spark standalone with cluster deploy mode only:

  --driver-cores NUM          Cores for driver (Default: 1).

 

 Spark standalone or Mesos with cluster deploy mode only:

  --supervise                 If given, restarts the driver on failure.

  --kill SUBMISSION_ID        If given, kills the driver specified.

  --status SUBMISSION_ID      If given, requests the status of the driver specified.

 

 Spark standalone and Mesos only:

  --total-executor-cores NUM  Total cores for all executors.

 

 Spark standalone and YARN only:

  --executor-cores NUM        Number of cores per executor. (Default: 1 in YARN mode,

                              or all available cores on the worker in standalone mode)

 

 YARN-only:

  --driver-cores NUM          Number of cores used by the driver, only in cluster mode

                              (Default: 1).

  --queue QUEUE_NAME          The YARN queue to submit to (Default: "default").

  --num-executors NUM         Number of executors to launch (Default: 2).

                              If dynamic allocation is enabled, the initial number of

                              executors will be at least NUM.

  --archives ARCHIVES         Comma separated list of archives to be extracted into the

                              working directory of each executor.

  --principal PRINCIPAL       Principal to be used to login to KDC, while running on

                              secure HDFS.

  --keytab KEYTAB             The full path to the file that contains the keytab for the

                              principal specified above. This keytab will be copied to

                              the node running the Application Master via the Secure

                              Distributed Cache, for renewing the login tickets and the

                              delegation tokens periodically.

标签:Cluster,Default,driver,Yarn,cluster,mode,executor,cores,Spark
来源: https://blog.csdn.net/MH_Tan/article/details/100523927