莫烦pytorch 保存提取
作者:互联网
保存有两种:第一种是保存整个神经网络,第二种是保存神经网络参数。
提取也是有两种:第一种是提取整个神经网络(网络大时会比较慢),第二种是提取神经网络参数。
第二种的前提是有一个要构建一个相同的神经网络。
import torch
import matplotlib.pyplot as plt
# torch.manual_seed(1) # reproducible
# fake data
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)
# The code below is deprecated in Pytorch 0.4. Now, autograd directly supports tensors
# x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)
def save(q,w,e):
# save net1
net1 = torch.nn.Sequential(
torch.nn.Linear(q,w),
torch.nn.ReLU(),
torch.nn.Linear(w,e)
)
optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss()
for t in range(100):
prediction = net1(x)
loss = loss_func(prediction, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# plot result
plt.figure(1, figsize=(10, 3))
plt.subplot(131)
plt.title('Net1')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
# 2 ways to save the net
torch.save(net1, 'net.pkl') # save entire net
torch.save(net1.state_dict(), 'net_params.pkl') # save only the parameters
def restore_net():
# restore entire net1 to net2
net2 = torch.load('net.pkl')
prediction = net2(x)
# plot result
plt.subplot(132)
plt.title('Net2')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
def restore_params(q,w,e):
# restore only the parameters in net1 to net3
net3 = torch.nn.Sequential(
torch.nn.Linear(q,w),
torch.nn.ReLU(),
torch.nn.Linear(w,e)
)
# copy net1's parameters into net3
net3.load_state_dict(torch.load('net_params.pkl'))
prediction = net3(x)
# plot result
plt.subplot(133)
plt.title('Net3')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.show()
# save net1
save(1,10,1)
# restore entire net (may slow)
restore_net()
# restore only the net parameters
restore_params(1,10,1)
结果对比:
标签:plt,提取,莫烦,numpy,torch,pytorch,net,data,net1 来源: https://blog.csdn.net/Kstheme/article/details/99545561