c – 两点之间网格中的最短路径.抓住了
作者:互联网
我有这个问题,我必须通过向右或向下移动找到NxM网格中从A点(总是左上角)到B点(总是在右下角)的最短路径.听起来很简单,嗯?好吧,这里有一个问题:我只能移动我正坐在的瓷砖上显示的数字.让我说明一下:
2 5 1 2
9 2 5 3
3 3 1 1
4 8 2 7
在这个4×4网格中,最短路径需要3个步骤,从左上角2个节点向下步行到3个,从那里3个节点从右到1,然后从1个节点向下到达目标.
[2] 5 1 2
9 2 5 3
[3] 3 1 [1]
4 8 2 [7]
如果不是最短的路径,我也可以采取这条路线:
[2] 5 [1][2]
9 2 5 3
3 3 1 [1]
4 8 2 [7]
不幸的是,这将采取惊人的4个步骤,因此,不符合我的利益.
这应该清楚一点.现在关于输入.
用户输入网格如下:
5 4 // height and width
2 5 2 2 //
2 2 7 3 // the
3 1 2 2 // grid
4 8 2 7 //
1 1 1 1 //
家庭作业
我已经想到了这一点,但是无法找到一个更好的解决方案,而不是将输入的网格简化为未加权(或负权重)的图形,并在其上运行类似dijkstra或A *(或沿着这些线的东西).嗯……这是我迷路的部分.我实现了一些事情(或者立刻投入到捶打中).它与dijkstra或A *或任何东西无关;只是直接的广度优先搜索.
代码
#include <iostream>
#include <vector>
struct Point;
typedef std::vector<int> vector_1D;
typedef std::vector< std::vector<int> > vector_2D;
typedef std::vector<Point> vector_point;
struct Point {
int y, x;
vector_point Parents;
Point(int yPos = 0, int xPos = 0) : y(yPos), x(xPos) { }
void operator << (const Point& point) { this->Parents.push_back(point); }
};
struct grid_t {
int height, width;
vector_2D tiles;
grid_t() // construct the grid
{
std::cin >> height >> width; // input grid height & width
tiles.resize(height, vector_1D(width, 0)); // initialize grid tiles
for(int i = 0; i < height; i++) //
for(int j = 0; j < width; j++) // input each tile one at a time
std::cin >> tiles[i][j]; // by looping through the grid
}
};
void go_find_it(grid_t &grid)
{
vector_point openList, closedList;
Point previous_node; // the point is initialized as (y = 0, x = 0) if not told otherwise
openList.push_back(previous_node); // (0, 0) is the first point we want to consult, of course
do
{
closedList.push_back(openList.back()); // the tile we are at is good and checked. mark it so.
openList.pop_back(); // we don't need this guy no more
int y = closedList.back().y; // now we'll actually
int x = closedList.back().x; // move to the new point
int jump = grid.tiles[y][x]; // 'jump' is the number shown on the tile we're standing on.
if(y + jump < grid.height) // if we're not going out of bounds
{
openList.push_back(Point(y+jump, x)); //
openList.back() << Point(y, x); // push in the point we're at right now, since it's the parent node
}
if(x + jump < grid.width) // if we're not going out of bounds
{
openList.push_back(Point(y, x+jump)); // push in the new promising point
openList.back() << Point(y, x); // push in the point we're at right now, since it's the parent node
}
}
while(openList.size() > 0); // when there are no new tiles to check, break out and return
}
int main()
{
grid_t grid; // initialize grid
go_find_it(grid); // basically a brute-force get-it-all-algorithm
return 0;
}
我还应该指出,运行时间不能超过1秒,最大网格高度和宽度是1000.所有的图块也是1到1000之间的数字.
谢谢.
编辑代码
#include <iostream>
#include <vector>
struct Point;
typedef std::vector<int> vector_1D;
typedef std::vector< std::vector<int> > vector_2D;
typedef std::vector<Point> vector_point;
struct Point {
int y, x, depth;
vector_point Parents;
Point(int yPos = 0, int xPos = 0, int dDepth = 0) : y(yPos), x(xPos), depth(dDepth) { }
void operator << (const Point& point) { this->Parents.push_back(point); }
};
struct grid_t {
int height, width;
vector_2D tiles;
grid_t() // construct the grid
{
std::cin >> height >> width; // input grid height & width
tiles.resize(height, vector_1D(width, 0)); // initialize grid tiles
for(int i = 0; i < height; i++) //
for(int j = 0; j < width; j++) // input each tile one at a time
std::cin >> tiles[i][j]; // by looping through the grid
}
};
int go_find_it(grid_t &grid)
{
vector_point openList, closedList;
Point previous_node(0, 0, 0); // the point is initialized as (y = 0, x = 0, depth = 0) if not told otherwise
openList.push_back(previous_node); // (0, 0) is the first point we want to consult, of course
int min_path = 1000000;
do
{
closedList.push_back(openList[0]); // the tile we are at is good and checked. mark it so.
openList.erase(openList.begin()); // we don't need this guy no more
int y = closedList.back().y; // now we'll actually move to the new point
int x = closedList.back().x; //
int depth = closedList.back().depth; // the new depth
if(y == grid.height-1 && x == grid.width-1) return depth; // the first path is the shortest one. return it
int jump = grid.tiles[y][x]; // 'jump' is the number shown on the tile we're standing on.
if(y + jump < grid.height) // if we're not going out of bounds
{
openList.push_back(Point(y+jump, x, depth+1)); //
openList.back() << Point(y, x); // push in the point we're at right now, since it's the parent node
}
if(x + jump < grid.width) // if we're not going out of bounds
{
openList.push_back(Point(y, x+jump, depth+1)); // push in the new promising point
openList.back() << Point(y, x); // push in the point we're at right now, since it's the parent node
}
}
while(openList.size() > 0); // when there are no new tiles to check, break out and return false
return 0;
}
int main()
{
grid_t grid; // initialize grid
int min_path = go_find_it(grid); // basically a brute-force get-it-all-algorithm
std::cout << min_path << std::endl;
//system("pause");
return 0;
}
该程序现在打印正确的答案.现在我必须优化(运行时间太大).有关这一个的任何提示吗?优化是我吮吸的一件事.
答案
最后,解决方案似乎只包含很少的代码.我喜欢它越少越好.感谢DejanJovanović的美丽解决方案
#include <iostream>
#include <vector>
#include <algorithm>
struct grid_t {
int height, width;
std::vector< std::vector<int> > tiles;
std::vector< std::vector<int> > distance;
grid_t() // construct the grid
{
std::cin >> height >> width; // input grid height & width
tiles.resize(height, std::vector<int>(width, 0)); // initialize grid tiles
distance.resize(height, std::vector<int>(width, 1000000)); // initialize grid tiles
for(int i = 0; i < height; i++) //
for(int j = 0; j < width; j++) // input each tile one at a time
std::cin >> tiles[i][j]; // by looping through the grid
}
};
int main()
{
grid_t grid; // initialize grid
grid.distance[0][0] = 0;
for(int i = 0; i < grid.height; i++) {
for(int j = 0; j < grid.width; j++) {
if(grid.distance[i][j] < 1000000) {
int d = grid.tiles[i][j];
if (i + d < grid.height) {
grid.distance[i+d][j] = std::min(grid.distance[i][j] + 1, grid.distance[i+d][j]);
}
if (j + d < grid.width) {
grid.distance[i][j+d] = std::min(grid.distance[i][j] + 1, grid.distance[i][j+d]);
}
}
}
}
if(grid.distance[grid.height-1][grid.width-1] == 1000000) grid.distance[grid.height-1][grid.width-1] = 0;
std::cout << grid.distance[grid.height-1][grid.width-1] << std::endl;
//system("pause");
return 0;
}
解决方法:
需要构建图形,这可以通过使用矩阵上的一次扫描的动态编程来容易地解决.
您可以在开始时将距离矩阵D [i,j]设置为inf,D [0,0] = 0.在遍历矩阵时,您只需执行
if (D[i,j] < +inf) {
int d = a[i, j];
if (i + d < M) {
D[i + d, j] = min(D[i,j] + 1, D[i + d, j]);
}
if (j + d < N) {
D[i, j + d] = min(D[i,j] + 1, D[i, j + d]);
}
}
最终的最小距离为D [M -1,N-1].如果您希望重建路径,可以保留一个单独的矩阵,标记最短路径的来源.
标签:dijkstra,c,algorithm,graph-algorithm,shortest-path 来源: https://codeday.me/bug/20190725/1536145.html