gensim Load embeddings
作者:互联网
gensim package
from gensim.models.keyedvectors import KeyedVectors
twitter_embedding_path = 'twitter_embedding.emb'
twitter_vocab_path = 'twitter_model.vocab'
foursquare_embedding_path = 'foursquare_embedding.emb'
foursquare_vocab_path = 'foursquare_model.vocab'
# load the embedding vector using gensim
x_vectors = KeyedVectors.load_word2vec_format(foursquare_embedding_path, binary=False, fvocab=foursquare_vocab_path)
y_vectors = KeyedVectors.load_word2vec_format(twitter_embedding_path, binary=False, fvocab=twitter_vocab_path)
print(x_vectors.vocab.keys()[0:10])
print(y_vectors[0:10])
Content in 'twitter_embedding.emb':
5120 64
BarackObama -0.079930 0.106491 -0.075812 -0.026447 ...
mashable 0.046692 -0.038019 -0.055519 ...
...
Content in 'twitter_model.vocab':
BarackObama 3475971
mashable 2668606
JonahLupton 2515250
instagram 2359886
TheEllenShow 2292545
cnnbrk 2157283
nytimes 2141588
foursquare 2021352...
标签:Load,vocab,embeddings,twitter,vectors,foursquare,embedding,path,gensim 来源: https://www.cnblogs.com/sonictl/p/11220479.html