其他分享
首页 > 其他分享> > Luogu P5469 [NOI2018]机器人 (DP、多项式)

Luogu P5469 [NOI2018]机器人 (DP、多项式)

作者:互联网

不用FFT的多项式(大雾)

题目链接: https://www.luogu.org/problemnew/show/P5469

(这题在洛谷都成绿题了海星)

题解: 首先我们考虑,一个序列位置最右边的最大值可以走遍整个序列,并且其余任何点都不能跨过这个位置。

所以我们可以区间dp, \(dp[l][r][x]\)表示区间\([l,r]\)最大值不超过\(x\)的方案数,枚举最大值点\(mid\)及其值\(k\), \(dp[l][r][x]=\sum_{mid}\sum_{k}dp[l][mid-1][k]\times dp[mid+1][r][k-1]\), 也可以设\(dp[l][r][x]\)表示区间\([l,r]\)的最大值恰好为\(x\)的方案数,枚举最大值点\(mid\)则有\(dp[l][r][x]=\sum_{mid}\sum_{k\le x}dp[l][mid-1][k]\sum_{k<x}dp[mid+1][r][k]\).

可获得\(35\)分,当然如果你有梦想数组开大点卡卡常就有\(50\)分了。(然而我在考场上没梦想\(35\)分滚粗了)

然后正解的话,恰好为\(x\)那种状态比较好。

首先离散化,那么我们发现当\(k\)在每一段区间内时,转移是类似的。

进一步,归纳易证当\(k\)在某一段区间内时\(dp[l][r][k]\)是关于\(k\)的不超过\((r-l)\)次多项式。

于是记忆化搜索一波,使用多项式前缀和进行转移,这样枚举\(mid\)之后复杂度为多项式次数的平方。

多项式前缀和需要预处理\(s_k(x)=\sum^{x}_{i=0}x^k\), 这是一个\((k+1)\)次多项式,所以Lagrange插值求出来系数。

裸做\(80\)分起步(我裸做了一波得了\(85\))

剪枝优化可获得\(100\)分。

好难写啊,我好菜啊……

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<vector>
#include<algorithm>
#define llong long long
using namespace std;

const int P = 1e9+7;
const int N = 301;

llong quickpow(llong x,llong y)
{
    llong cur = x,ret = 1ll;
    for(int i=0; y; i++)
    {
        if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
        cur = cur*cur%P;
    }
    return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);}

llong aux[N+4],aux2[N+4];
struct Polynomial
{
    vector<llong> a; int n;
    Polynomial() {}
    Polynomial(int _n) {n = _n; for(int i=0; i<=n; i++) a.push_back(0ll);}
    void clear() {n = 0; a.clear(); a.push_back(0ll);}
    void output() {printf("deg%d, ",n); for(int i=0; i<=n; i++) printf("%lld ",a[i]); puts("");}
    void simplify()
    {
        while(n>=1 && a[n]==0)
        {
            a.pop_back();
            n--;
        }
    }
    Polynomial operator +(Polynomial &arg) const
    {
        Polynomial ret(max(n,arg.n));
        for(int i=0; i<=min(n,arg.n); i++)
        {
            ret.a[i] = (a[i]+arg.a[i])%P;
        }
        for(int i=min(n,arg.n)+1; i<=n; i++) ret.a[i] = a[i];
        for(int i=min(n,arg.n)+1; i<=arg.n; i++) ret.a[i] = arg.a[i];
        return ret;
    }
    Polynomial operator -(Polynomial &arg) const
    {
        Polynomial ret(max(n,arg.n));
        for(int i=0; i<=min(n,arg.n); i++)
        {
            ret.a[i] = (a[i]-arg.a[i]+P)%P;
        }
        for(int i=min(n,arg.n)+1; i<=n; i++) ret.a[i] = a[i];
        for(int i=min(n,arg.n)+1; i<=arg.n; i++) ret.a[i] = P-arg.a[i];
        return ret;
    }
    Polynomial operator *(Polynomial &arg) const
    {
        Polynomial ret(n+arg.n);
        for(int i=0; i<=n; i++)
        {
//          if(a[i]==0) continue;
            for(int j=0; j<=arg.n; j++)
            {
                ret.a[i+j] = (ret.a[i+j]+a[i]*arg.a[j])%P;
            }
        }
        return ret;
    }
    llong calc(llong x)
    {
        llong ret = 0ll;
        for(int i=n; i>=0; i--)
        {
            ret = (ret*x+a[i])%P;
        }
        return ret;
    }
    void interpoly(int _n,llong ax[],llong ay[])
    {
        n = _n; for(int i=0; i<=n; i++) a.push_back(0ll);
        for(int i=0; i<=n+1; i++) aux[i] = 0ll;
        aux[0] = 1ll;
        for(int i=0; i<=n; i++)
        {
            for(int j=i+1; j>0; j--)
            {
                aux[j] = (aux[j-1]-aux[j]*ax[i]%P+P)%P;
            }
            aux[0] = P-aux[0]*ax[i]%P;
        }
        for(int i=0; i<=n; i++)
        {
            llong tmp = 1ll;
            for(int j=0; j<=n; j++)
            {
                if(i==j) continue;
                tmp = tmp*(ax[i]-ax[j]+P)%P;
            }
            llong coe = mulinv(tmp);
            for(int j=n+1; j>=0; j--) {aux2[j] = aux[j];}
            for(int j=n; j>=0; j--)
            {
                a[j] = (a[j]+aux2[j+1]*coe%P*ay[i])%P;
                aux2[j] = (aux2[j]+ax[i]*aux2[j+1])%P;
            }
        }
    }
};
Polynomial tmp1,tmp2,tmp3;
Polynomial dp[2661][(N<<1)+3],sdp[2661][(N<<1)+3];
llong lval[2661][(N<<1)+3],rval[2661][(N<<1)+3];
int dpid[N+4][N+4];
Polynomial spw[N+4];
struct Interval
{
    llong lb,rb; //[1,2n]
} a[N+3];
vector<llong> disc;
llong spwx[N+3],spwy[N+3];
int mx[N+3][N+3];
int n,nsta;
llong ans;

int getid(llong x) {return lower_bound(disc.begin(),disc.end(),x)-disc.begin();} //no +1

Polynomial prefixsum(Polynomial poly)
{
    Polynomial ret(poly.n+1);
    for(int i=0; i<=poly.n; i++)
    {
        for(int j=0; j<=i+1; j++)
        {
            ret.a[j] = (ret.a[j]+poly.a[i]*spw[i].a[j])%P;
        }
    }
    return ret;
}

void dfs(int l,int r,int x)
{
    Polynomial tmp1,tmp2,tmp3;
    if(dpid[l][r] && dp[dpid[l][r]][x].a.size()>0) {return;}
    if(!dpid[l][r]) {nsta++; dpid[l][r] = nsta;}
    if(l==r)
    {
        if(!dpid[l][r]) {nsta++; dpid[l][r] = nsta;}
        dp[dpid[l][r]][x] = Polynomial(0); dp[dpid[l][r]][x].a[0] = (x>=a[l].lb&&x<=a[l].rb) ? 1ll : 0ll;
        sdp[dpid[l][r]][x] = prefixsum(dp[dpid[l][r]][x]);
        lval[dpid[l][r]][x] = sdp[dpid[l][r]][x].calc(disc[x-1]);
        rval[dpid[l][r]][x] = sdp[dpid[l][r]][x].calc(disc[x]);
        return;
    }
    dp[dpid[l][r]][x].clear(); sdp[dpid[l][r]][x].clear();
    if(mx[l][r]>x) return;
    for(int lenl=(r-l+1)>>1; lenl<=(r-l+1)+1-((r-l+1)>>1); lenl++)
    {
        int mid = l+lenl-1;
        if(!(x>=a[mid].lb && x<=a[mid].rb)) {continue;} //´Ë´¦ÒªÌØÅÐ 
        tmp1.clear(); tmp2.clear();
        if(mid>l)
        {
            for(int k=1; k<=x; k++)
            {
                dfs(l,mid-1,k);
                if(k<x)
                {
                    tmp1.a[0] = (tmp1.a[0]+rval[dpid[l][mid-1]][k]-lval[dpid[l][mid-1]][k]+P)%P;
                }
                else
                {
                    tmp1 = tmp1+sdp[dpid[l][mid-1]][k];
                    tmp1.a[0] = (tmp1.a[0]-lval[dpid[l][mid-1]][k]+P)%P;
                }
            }
        }
        else
        {
            tmp1 = Polynomial(0); tmp1.a[0] = 1ll;
        }
        if(mid<r)
        {
            for(int k=0; k<=x; k++)
            {
                dfs(mid+1,r,k);
                if(k<x)
                {
                    tmp2.a[0] = (tmp2.a[0]+rval[dpid[mid+1][r]][k]-lval[dpid[mid+1][r]][k]+P)%P;
                }
                else
                {
                    tmp2 = tmp2+sdp[dpid[mid+1][r]][k];
                    tmp2 = tmp2-dp[dpid[mid+1][r]][k];
                    tmp2.a[0] = (tmp2.a[0]-lval[dpid[mid+1][r]][k]+P)%P;
                }
            }
        }
        else
        {
            tmp2 = Polynomial(0); tmp2.a[0] = 1ll;
        }
        tmp3 = tmp1*tmp2;
        dp[dpid[l][r]][x] = dp[dpid[l][r]][x]+tmp3;
    }
    sdp[dpid[l][r]][x] = prefixsum(dp[dpid[l][r]][x]);
    lval[dpid[l][r]][x] = sdp[dpid[l][r]][x].calc(disc[x-1]);
    rval[dpid[l][r]][x] = sdp[dpid[l][r]][x].calc(disc[x]);
}

int main()
{
    scanf("%d",&n);
    for(int i=1; i<=n; i++) {scanf("%lld%lld",&a[i].lb,&a[i].rb); disc.push_back(a[i].lb-1); disc.push_back(a[i].rb);}
    for(int i=0; i<=n; i++)
    {
        spwx[0] = 0ll; spwy[0] = 0ll;
        for(int j=1; j<=i+1; j++)
        {
            spwx[j] = j;
            spwy[j] = (spwy[j-1]+quickpow(j,i))%P;
        }
        spw[i].interpoly(i+1,spwx,spwy);
    }
    sort(disc.begin(),disc.end()); disc.erase(unique(disc.begin(),disc.end()),disc.end());
    for(int i=1; i<=n; i++) {a[i].lb = getid(a[i].lb); a[i].rb = getid(a[i].rb);}
    nsta = 1; for(int i=0; i<disc.size(); i++)
    {
        dp[1][i] = Polynomial(0); dp[1][i].a[0] = 1ll;
        sdp[1][i] = prefixsum(dp[1][i]);
        lval[1][i] = sdp[1][i].calc(disc[i-1]);
        rval[1][i] = sdp[1][i].calc(disc[i]);
    }
    for(int i=1; i<=n; i++)
    {
        mx[i][i] = a[i].lb;
        for(int j=i+1; j<=n; j++)
        {
            mx[i][j] = max(mx[i][j-1],(int)a[j].lb);
        }
    }
    ans = 0ll;
    for(int i=1; i<disc.size(); i++)
    {
        dfs(1,n,i);
        ans = (ans+sdp[dpid[1][n]][i].calc(disc[i])-sdp[dpid[1][n]][i].calc(disc[i-1])+P)%P;
    }
    printf("%lld\n",ans);
    return 0;
}

标签:llong,int,Luogu,mid,P5469,Polynomial,aux,NOI2018,dp
来源: https://www.cnblogs.com/suncongbo/p/11217236.html