其他分享
首页 > 其他分享> > IEEE Fraud Detection Competition思路探索

IEEE Fraud Detection Competition思路探索

作者:互联网

# Here we confirm that all of the transactions in `train_identity`
print(np.sum(train_transaction['TransactionID'].isin(train_identity['TransactionID'].unique())))
print(np.sum(test_transaction['TransactionID'].isin(test_identity['TransactionID'].unique())))
输出:
24.4% of TransactionIDs in train (144233 / 590540) have an associated train_identity.
28.0% of TransactionIDs in test (144233 / 590540) have an associated train_identity.
train_transaction['TransactionDT'].plot(kind='hist',
                                        figsize=(15, 5),
                                        label='train',
                                        bins=50,
                                        title='Train vs Test TransactionDT distribution')
test_transaction['TransactionDT'].plot(kind='hist',
                                       label='test',
                                       bins=50)
plt.legend()
plt.show()

在这里插入图片描述

ProductCD
emaildomain
card1 - card6
addr1, addr2
P_emaildomain
R_emaildomain
M1 - M9

DeviceType
DeviceInfo
id_12 - id_38

标签:Fraud,TransactionDT,Competition,transaction,Detection,train,test,TransactionID,i
来源: https://blog.csdn.net/Lzj000lzj/article/details/96303778