超参数(Hyperparameter)
作者:互联网
什么是超参数?
机器学习模型中一般有两类参数:一类需要从数据中学习和估计得到,称为模型参数(Parameter)---即模型本身的参数。比如,线性回归直线的加权系数(斜率)及其偏差项(截距)都是模型参数。还有一类则是机器学习算法中的调优参数(tuning parameters),需要人为设定,称为超参数(Hyperparameter)。比如,正则化系数λ,决策树模型中树的深度。
参数和超参数的区别:
模型参数是模型内部的配置变量,需要用数据估计模型参数的值;模型超参数是模型外部的配置,需要手动设置超参数的值。机器学习中一直说的“调参”,实际上不是调“参数”,而是调“超参数”。
哪些属于超参数?
梯度下降法中的学习速率α,迭代次数epoch,批量大小batch-size,k近邻法中的k(最相近的点的个数),决策树模型中树的深度,等等。
超参数的优化:
有四种主要的策略可用于搜索最佳配置:
- 照看(babysitting,又叫试错)
- 网格搜索
- 随机搜索
- 贝叶斯优化
标签:法中,Hyperparameter,模型,学习,中树,参数 来源: https://www.cnblogs.com/HuZihu/p/10641972.html