Problem 21
作者:互联网
Problem 21
https://projecteuler.net/problem=21
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
如果a的因子之和等于b,b的因子之和等于a,并且a不等于b,那么a和b称为亲和数。
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
计算10000以下的所有亲和数之和。
import time def is_amicable_number(num1, num2, divisors_num1, divisors_num2): if sum(divisors_num1) != num2: return False if sum(divisors_num2) != num1: return False return True def find_divisors(num): divisors = [] for i in range(1, num//2+1): if num % i == 0: divisors.append(i) return divisors start_time = time.ctime() amicable_numbers = [] for x in range(1, 10001): x_divisors = find_divisors(x) for y in range(x//2, x): y_divisors = find_divisors(y) print('Searching for amicable numbers({x}?{y})...'.format(x=x, y=y)) if is_amicable_number(x, y, x_divisors, y_divisors): print('Amicable numbers:', x, ':', y) amicable_numbers.append([x, y]) end_time = time.ctime() print(start_time) print(end_time) print(amicable_numbers) tot = 0 for i in amicable_numbers: tot += sum(i) print(tot)
结果:
10000以下的亲和数:[[284, 220], [1210, 1184], [2924, 2620], [5564, 5020], [6368, 6232]]
31626
标签:21,sum,numbers,time,print,Problem,divisors,amicable 来源: https://www.cnblogs.com/noonjuan/p/11031349.html