其他分享
首页 > 其他分享> > 28、二维装箱

28、二维装箱

作者:互联网

from pyscipopt import Model, quicksum
from vtk import *
import vtk
import random as rd
import time
import numpy as np
import functools

#二维商品排序用
def cmp_2d(x,y):
    if x[0] < y[0]:
        return -1
    elif x[0] > y[0]:
        return 1
    elif x[1] < y[1]:
        return -1
    elif x[1] > y[1]:
        return 1
    else:
        return 0

#数据生成,输入为箱子种类数,箱子最大长、最小长、最大宽、最小宽、商品个数、商品最大长、最小长、最大宽、最小宽
#输出为生成的箱子列表和商品列表
def data_generate_2d(nums_box, max_edge_box, min_edge_box, nums_good, max_edge_good, min_edge_good):

    #随机生成箱子
    boxs = []
    for i in range(nums_box):
        boxs.append([int((max_edge_box-min_edge_box) * rd.random() + min_edge_box), int((max_edge_box-min_edge_box) * rd.random() + min_edge_box)])

    #随机生成商品
    goods = []
    for i in range(nums_good):
        goods.append([int((max_edge_good-min_edge_good) * rd.random() + min_edge_good), int((max_edge_good-min_edge_good) * rd.random() + min_edge_good)])

    return boxs,goods

def data_pre(boxs, goods):

    #箱子长边作长,放前面
    for box in boxs:
        if box[0] < box[1]:
            box[0],box[1] = box[1],box[0]

    #箱子排序,大的放前面
    boxs = sorted(boxs, key=functools.cmp_to_key(cmp_2d), reverse=True)

    #箱子种类去重
    i = 0
    while i < len(boxs) - 1:
        j = i + 1
        while j < len(boxs):
            if boxs[i][0] == boxs[j][0] and boxs[i][1] == boxs[j][1]:
                del boxs[j]
            else:
                j += 1
        i += 1

    #商品长边作长,放前面
    for good in goods:
        if good[0] < good[1]:
            good[0],good[1] = good[1],good[0]

    #商品排序,大的放前面
    goods = sorted(goods, key=functools.cmp_to_key(cmp_2d), reverse=True)

    return boxs,goods

#检验是否每个商品都能有一个箱子放下它
def check_2d(boxs, goods):
    for good in goods:
        can_put = False
        for box in boxs:
            if good[0] <= box[0] and good[1] <= box[1]:
                can_put = True
                break
        if not can_put:
            print(good,"太大,无合适箱子")
            return False
    return True

#二维装箱整数规划
def IP_2d(boxs, goods, time_limit):

    m = len(boxs)
    n = len(goods)

    M = max([max(boxs[i]) for i in range(m)])*10

    model = Model("IP_2d")

    #对X、Y,i为包裹下标,j为商品下标,x[i][j]=1代表第j件商品放进第i个包裹里,y[i]=1表示开启第i个包裹
    X = [[model.addVar(vtype="B", name="X[%s,%s]" % (i, j)) for j in range(n)] for i in range(m*n)]
    Y = [model.addVar(vtype="B", name="Y[%s]" % i) for i in range(m*n)]
    #包裹面积向量,[n个boxs[0],n个boxs[1],...,n个boxs[m-1]]
    c = [boxs[i][0]*boxs[i][1] for i in range(len(boxs)) for j in range(len(goods))]
    cb = [boxs[i] for i in range(len(boxs)) for j in range(len(goods))]

    #码放形式,1代表(l,w), 0代表(w,l)
    type_place = [model.addVar(vtype="B", name="tp[%s]" % i) for i in range(n)]

    #码放长、宽、坐标x、y、z
    L = [model.addVar(vtype="I", name="L[%s]" % i) for i in range(n)]
    W = [model.addVar(vtype="I", name="W[%s]" % i) for i in range(n)]
    x = [model.addVar(vtype="I", name="x[%s]" % i) for i in range(n)]
    y = [model.addVar(vtype="I", name="y[%s]" % i) for i in range(n)]

    #选择变量,fx[i][j]=1代表i在j的左边(小),fy[i][j]=1同理,f[i][j][k]=1代表j、k同时在第i个箱子中
    fx = [[model.addVar(vtype="B", name="fx[%s,%s]" % (i, j)) for j in range(n)] for i in range(n)]
    fy = [[model.addVar(vtype="B", name="fy[%s,%s]" % (i, j)) for j in range(n)] for i in range(n)]
    f = [[[model.addVar(vtype="B", name="f[%s,%s,%s]" % (i, j, k)) for k in range(n)] for j in range(n)] for i in range(m*n)]

    #以总包裹体积最小(即填充率最大)为目标
    model.setObjective(quicksum(Y[i]*c[i] for i in range(m*n)), "minimize")

    # 使用前必须开启
    for i in range(m * n):
        for j in range(n):
            model.addCons(X[i][j] - Y[i] <= 0)

    #每个商品都能被装下
    for j in range(n):
        model.addCons(quicksum(X[i][j] for i in range(m * n)) == 1)

    #码放长宽约束
    for j in range(n):
        model.addCons(L[j] - goods[j][0] * type_place[j] - goods[j][1] * (1 - type_place[j]) == 0)
        model.addCons(W[j] - goods[j][1] * type_place[j] - goods[j][0] * (1 - type_place[j]) == 0)

    #位置约束,大于0,不超过边界,不相交
    for j in range(n):
        model.addCons(x[j] >= 0)
        model.addCons(y[j] >= 0)

    for i in range(m*n):
        for j in range(n):
            model.addCons(x[j] + L[j] - cb[i][0] - M*(1 - X[i][j]) <= 0)
            model.addCons(y[j] + W[j] - cb[i][1] - M*(1 - X[i][j]) <= 0)

    for j in range(n):
        for k in range(j+1,n):
            model.addCons(x[j] + L[j] - x[k] - M*(1 - fx[j][k]) <= 0)
            model.addCons(x[k] + L[k] - x[j] - M*(1 - fx[k][j]) <= 0)
            model.addCons(y[j] + W[j] - y[k] - M*(1 - fy[j][k]) <= 0)
            model.addCons(y[k] + W[k] - y[j] - M*(1 - fy[k][j]) <= 0)

    for i in range(m*n):
        for j in range(n):
            for k in range(j+1,n):
                model.addCons(X[i][j] + X[i][k] - 1 - M*(1 - f[i][j][k]) <= 0)

    for j in range(n):
        for k in range(j+1,n):
            model.addCons(fx[j][k] + fx[k][j] + fy[j][k] + fy[k][j] + quicksum(f[i][j][k] for i in range(m*n)) >= m*n)

    #设置求解时间
    model.setRealParam("limits/time", time_limit)

    model.optimize()
    print("\ngap:",model.getGap())

    #拿结果
    X1 = [[round(model.getVal(X[i][j])) for j in range(n)] for i in range(m * n)]
    L1 = [round(model.getVal(L[i])) for i in range(n)]
    W1 = [round(model.getVal(W[i])) for i in range(n)]
    x1 = [round(model.getVal(x[i])) for i in range(n)]
    y1 = [round(model.getVal(y[i])) for i in range(n)]

    L_box = []
    L_goods = []
    L_coordinates = []

    for i in range(m*n):
        goods_i = []
        coordinates_i = []
        for j in range(n):
            if X1[i][j] == 1:
                goods_i.append(goods[j])
                coordinates_i.append([L1[j],W1[j],x1[j],y1[j]])
        if len(goods_i) > 0:
            L_box.append(cb[i])
            L_goods.append(goods_i)
            L_coordinates.append(coordinates_i)

    return L_box, L_goods, L_coordinates, model.getGap()

#任务分流汇总
#给一系列箱子和商品(箱子可用个数不限),推荐结果
def stacking_2d(boxs, goods, time_limit):

    #长宽预处理,降序排序,箱子去重
    boxs,goods = data_pre(boxs,goods)

    #这里是否所有的商品均至少有一个箱子可以装下,若有商品超出规格则直接返回
    if not check_2d(boxs, goods):
        return [[], []]

    # 多类箱子,应用整数规划求解
    L_box, L_goods, L_coordinates, gap = IP_2d(boxs, goods, time_limit)

    # # gap较大时,用启发式方法比较,取优
    # if gap >= 0.01 and goods_check(goods, L_goods):
    #     print("尝试采用启发式方法")
    #     L_box1, L_goods1 = BFD(boxs, goods)
    #     if sum(L_box) > sum(L_box1) and goods_check(goods, L_goods1):
    #         print("采用启发式方法")
    #         L_box, L_goods = L_box1, L_goods1
    #
    # #结果检验,当求解器的结果有问题(商品数不符时)采用混合BFD求解方案
    # if not goods_check(goods, L_goods):
    #     # BFD
    #     L_box, L_goods = BFD(boxs, goods)

    return L_box, L_goods, L_coordinates

#添加商品图形
def Addcube_2d(ren, coordinate, edge_max, h, x_re, y_re, z_re):
    cube = vtk.vtkCubeSource()
    cube.SetXLength(coordinate[0]/edge_max)
    cube.SetYLength(coordinate[1]/edge_max)
    cube.SetZLength(h)
    cube.Update()

    translation = vtkTransform()
    translation.Translate((coordinate[2] + coordinate[0]/2.0)/edge_max + x_re, (coordinate[3] + coordinate[1]/2.0)/edge_max + y_re, h/2.0 + z_re)
    transformFilter = vtkTransformPolyDataFilter()
    transformFilter.SetInputConnection(cube.GetOutputPort())
    transformFilter.SetTransform(translation)
    transformFilter.Update()

    transformedMapper = vtkPolyDataMapper()
    transformedMapper.SetInputConnection(transformFilter.GetOutputPort())
    transformedActor = vtkActor()
    transformedActor.SetMapper(transformedMapper)
    transformedActor.GetProperty().SetColor((rd.uniform(0, 1), rd.uniform(0, 1), rd.uniform(0, 1)))

    ren.AddActor(transformedActor)

#一维展示,输入为箱子集和商品集,包裹的箱子和商品集一一对应
def show_2d(L_box, L_coordinates):

    nums = len(L_box)
    edge_max = max([max(L_box[i]) for i in range(len(L_box))])

    #预设参数
    CH = 0.5
    gap = 0.25
    CL_p = 1.1
    CW_p = nums + gap * (nums - 1)
    CH_p = 0.01
    gap = 0.25

    x_re = -0.5
    y_re = -0.5
    z_re = -0.5

    #渲染及渲染窗口,并根据捕捉的鼠标事件执行相应的操作
    ren = vtk.vtkRenderer()
    renWin = vtk.vtkRenderWindow()
    renWin.AddRenderer(ren)
    iren = vtk.vtkRenderWindowInteractor()
    iren.SetRenderWindow(renWin)


    """画容器"""
    for i in range(nums):

        cube = vtk.vtkCubeSource()
        cube.SetXLength(L_box[i][0]/edge_max)
        cube.SetYLength(L_box[i][1]/edge_max)
        cube.SetZLength(CH)
        cube.Update()

        translation = vtkTransform()
        translation.Translate(L_box[i][0]/edge_max/2.0 + x_re, L_box[i][1]/edge_max/2.0 + i + gap*i + y_re, CH/2.0 + z_re)
        transformFilter = vtkTransformPolyDataFilter()
        transformFilter.SetInputConnection(cube.GetOutputPort())
        transformFilter.SetTransform(translation)
        transformFilter.Update()

        transformedMapper = vtkPolyDataMapper()
        transformedMapper.SetInputConnection(transformFilter.GetOutputPort())
        transformedActor = vtkActor()
        transformedActor.SetMapper(transformedMapper)
        transformedActor.GetProperty().SetColor((1, 1, 1))
        transformedActor.GetProperty().SetRepresentationToWireframe()

        ren.AddActor(transformedActor)

    """画托盘"""
    cube = vtk.vtkCubeSource()
    cube.SetXLength(CL_p)
    cube.SetYLength(CW_p)
    cube.SetZLength(CH_p)
    cube.Update()

    translation = vtkTransform()
    translation.Translate(CL_p/2.0 + x_re, CW_p/2.0 + y_re, -CH_p/2.0 + z_re)
    transformFilter = vtkTransformPolyDataFilter()
    transformFilter.SetInputConnection(cube.GetOutputPort())
    transformFilter.SetTransform(translation)
    transformFilter.Update()

    transformedMapper = vtkPolyDataMapper()
    transformedMapper.SetInputConnection(transformFilter.GetOutputPort())
    transformedActor = vtkActor()
    transformedActor.SetMapper(transformedMapper)
    transformedActor.GetProperty().SetColor((0.2, 0.4, 0.8))

    ren.AddActor(transformedActor)

    for i in range(len(L_coordinates)):
        for j in range(len(L_coordinates[i])):
            Addcube_2d(ren, L_coordinates[i][j], edge_max, CH, x_re, i + gap*i + y_re, z_re)

    camera = vtk.vtkCamera()
    camera.SetPosition(5, -0.5, 2)
    camera.SetViewUp(0, 0, 1)
    ren.SetActiveCamera(camera)

    iren.Initialize()
    renWin.Render()
    iren.Start()

if __name__ == "__main__":

    #生成箱子集和商品集,计算并展示
    boxs,goods = data_generate_2d(nums_box = 2, max_edge_box = 20, min_edge_box = 10, nums_good = 10, max_edge_good = 10, min_edge_good = 1)
    print(boxs)
    print(goods)

    L_box, L_goods, L_coordinates= stacking_2d(boxs, goods, time_limit = 100)
    print(L_box)
    print(L_coordinates)
    show_2d(L_box, L_coordinates)

 

标签:box,goods,max,28,good,二维,edge,装箱,boxs
来源: https://blog.csdn.net/chaoyuzhang/article/details/91049332