【论文阅读】深度学习去雾2——去雾网络的Loss和超参数整理
作者:互联网
文章目录
- Towards Perceptual Image Dehazing by Physics-Based Disentanglement and Adversarial Training
- Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing
- High-Resolution Image Dehazing with respect to Training Losses and Receptive Field Sizes
- Multi-scale Single Image Dehazing using Perceptual Pyramid Deep Network
- Recursive Deep Residual Learning for Single Image Dehazing
- Single Image Dehazing via Conditional Generative Adversarial Network
Towards Perceptual Image Dehazing by Physics-Based Disentanglement and Adversarial Training
-
重建Loss,L1
Lrecon(GJ,Gt,GA)=EI∼I∥I−I^∥1 -
GAN Loss,多尺度Discrimiation均值
LGAN(G,D)=EJ∼J[logD(J)]+EI∼I[log(1−D(G(I)))]Ladv(GJ,D)=21(LGAN(GJ,Dloc)+LGAN(GJ,Dglo))
-
正则Loss,TV Loss
Lreg(Gt)=TV(t)=i,j∑∣ti+1,j−ti,j∣+∣ti,j+1−ti,j∣ -
总Loss
L(GJ,Gt,GA,D)=Ladv(GJ,D)+λLrecon(GJ,Gt,GA)+γLreg(Gt)
权重未知
Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing
-
Perceptual Loss(VGG16 feature extractor from 2nd and 5th pooling layers)
LPerceptual=∥ϕ(x)−ϕ(F(G(x)))∥22+∥ϕ(y)−ϕ(G(F(y)))∥22
-
GAN Loss
-
总Loss
L(G,F,Dx,Dy)=LCycleGAN(G,F,Dx,Dy)+γ∗LPerceptual(G,F) -
超参数
- adam optimizer
- lr = 0.0001
- 40 epoch
- Perceptual Loss 权重 γ=0.0001,采用VGG16 POOL2和POO5
High-Resolution Image Dehazing with respect to Training Losses and Receptive Field Sizes
LG=λ1L1+λVGGLVGG+λAvgLGAvg+λMaxLGMax
- input:512x512
- 500 epoch
- Adam optimizer (β 1 = 0.5)
- learning rate = 0.0002.
- batch size = 1
注:这里的GMax指的是,在Discriminate的时候,原版是求输出的概率score map的平均值作为loss,这里文章提出用最大值做loss。
Multi-scale Single Image Dehazing using Perceptual Pyramid Deep Network
-
LE reconstruction error
LE=CWH1c=1∑Cw=1∑Wh=1∑H∥G(I(c,w,h),Θ)−It(c,w,h)∥2 -
perceptual Loss LP
LP=CvWvHv1c=1∑Cvw=1∑Wvh=1∑Hv∥ϕV(G(I,Θ))−ϕV(It)∥2
采用VGG-16,relu3_1 -
总Loss
L=LE+λPLP
权重参数分别为1和0.5 -
超参数
- ADAM
- batch size = 1, input size = 640 x 640
- lr = 0.002
Recursive Deep Residual Learning for Single Image Dehazing
- epoch = 100
- lr = 0.001[0~60], lr=0.0001[61~100]
- Stochastic Gradient Descent (SGD). momentum parameter of 0.9.
- Loss: L2
Single Image Dehazing via Conditional Generative Adversarial Network
-
GAN Loss
LA=N1i=1∑Nlog(1−D(Ii,Ji)) -
VGG Loss
LP=N1i=1∑N∥Fi(G(Ii))−Fi(Ji)∥22
Vgg 具体的特征层未知 -
带正则的L1 重建Loss(实际就是L1 + TV Loss)
LT=N1i=1∑N(∥G(Ii)−Ji∥1+λ∥∇G(Ii)∥1) -
总loss
L=αLA+βLP+γLT
超参数
-
α=1,β=150,γ=150,λ=10−5
-
input size:256x256
-
lr = 0.0002
-
Adam
标签:Loss,right,Image,论文,参数,mathcal,GJ,left 来源: https://blog.csdn.net/u013095718/article/details/90925029