[HNOI2010] 弾飞绵羊
作者:互联网
题目链接:
题目分析:
题外话:
我即使是死了,钉在棺材里了,也要在墓里,用这腐朽的声带喊出:
根号算法牛逼!!!
显然,这是一道LCT裸题,然而在下并不会LCT于是采用了分块瞎搞
对于每个点维护两个信息:跳出块的步数\(step[i]\)和跳出块的落点\(lo[i]\)
预处理时使用类似模拟的方法。每次只处理还未处理过的点,并且对于每次处理顺带将向后跳到过的点也处理掉,具体见代码。
对于两种操作:
- 查:利用记录的落点在大块上跳并累加答案,单次复杂度\(O(\sqrt{n})\)
- 修:分析得到,每个点维护的两个信息都只与其块内的信息有关,所以仅需要重构一遍修改点所在块即可,单次复杂度\(O(\sqrt{n})\)
总复杂度约为\(O(m\sqrt{n})\)
代码:
#include<bits/stdc++.h>
#define N 200010
using namespace std;
inline int read() {
int cnt = 0, f = 1; char c;
c = getchar();
while (!isdigit(c)) {
if (c == '-') f = -f;
c = getchar();
}
while (isdigit(c)) {
cnt = cnt * 10 + c - '0';
c = getchar();
}
return cnt * f;
}
int q, pos[N], n, m, L[N], R[N], step[N], lo[N], sta[N], top, a[N], opr, x, k;
bool flag = false;
void pre_work() {
q = sqrt(n);
for (register int i = 1; i <= q; i++) {
L[i] = (i - 1) * q + 1;
R[i] = i * q;
}
if (R[q] < n) {
q++;
L[q] = R[q - 1] + 1;
R[q] = n;
}
for (register int i = 1; i <= q; i++)
for (register int j = L[i]; j <= R[i]; j++)
pos[j] = i;
for (register int i = 1; i <= n; i++) {
if(step[i]) continue;
flag = false;
sta[++top] = i; int now = i;
while(pos[now] == pos[now + a[now]]) {
if (step[now + a[now]]) {
flag = 1;
break;
} else {
now += a[now];
sta[++top] = now;
}
}
int total = top + 1;
while (top) {
if (!flag) {
lo[sta[top]] = now + a[now];
step[sta[top]] = total - top;
} else {
lo[sta[top]] = lo[now + a[now]];
step[sta[top]] = total - top + step[now + a[now]];
}
--top;
}
}
}
void change(int q,int k) {
int p = pos[q];
a[q] = k;
for (register int i = L[p]; i <= R[p]; i++) lo[i] = step[i] = 0;
for (register int i = L[p]; i <= R[p]; i++) {
if(step[i]) continue;
flag = false;
sta[++top] = i; int now = i;
while(pos[now] == pos[now + a[now]]) {
if (step[now + a[now]]) {
flag = 1;
break;
} else {
now += a[now];
sta[++top] = now;
}
}
int total = top + 1;
while (top) {
if (!flag) {
lo[sta[top]] = now + a[now];
step[sta[top]] = total - top;
} else {
lo[sta[top]] = lo[now + a[now]];
step[sta[top]] = total - top + step[now + a[now]];
}
--top;
}
}
}
int query(int i) {
int v = i;
int ans= 0;
while (pos[v]) {
ans += step[v];
v = lo[v];
}
return ans;
}
int main() {
n = read();
for (register int i = 1; i <= n; i++) a[i] = read();
m = read();
pre_work();
for (register int i = 1; i <= m; i++) {
opr = read(); x = read();
if (opr == 1) printf("%d\n", query(x + 1));
if (opr == 2) {
k = read();
change(x + 1, k);
}
}
return 0;
}
标签:cnt,int,lo,复杂度,sqrt,HNOI2010,绵羊,getchar 来源: https://www.cnblogs.com/kma093/p/10808431.html