其他分享
首页 > 其他分享> > P4542 [ZJOI2011]营救皮卡丘(Floyd+网络流)

P4542 [ZJOI2011]营救皮卡丘(Floyd+网络流)

作者:互联网

P4542 [ZJOI2011]营救皮卡丘

乍一看似乎没啥题相似的 仔细一看,$N<=150$ 边又是双向边,似乎可以用Floyd搞   先跑一遍Floyd处理出$dis[i][j]$ 注意到走据点要先走小的才能走大的 也就是说,$i<j<k$时,$dis[i][j]$不能从$k$转移过来 并且实际走路径时,编号也必须从小到大   于是题目转化成了: 给定序列$0,1,2,3,.....,n-1,n$,给出每两个数字之间的转移代价$dis[i][j](i<j)$, 用$k$条从0开始的子序列覆盖整条序列的最小代价,且每个数(除0外)恰好被覆盖一次。(你闲着没事走两次干啥) 有没有可能$i$到$j$的最优路径中间经过$k$,使$k$被覆盖2次?不会,因为在Floyd中已经处理掉了。   卧槽这不是P2469 [SDOI2010]星际竞速吗! 于是就转化为一个最小路径覆盖问题写辣
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
#define N 505
#define M 200005
int n,m,k,S,T0,T,tC,dis[N][N],d[N],a[N],p[N];
queue <int> h; bool inh[N];
int cnt=1,hd[N],nxt[M],ed[N],poi[M],val[M],cst[M];
inline void adde(int x,int y,int v1,int v2){
    nxt[ed[x]]=++cnt, hd[x]=hd[x]?hd[x]:cnt,
    ed[x]=cnt, poi[cnt]=y, val[cnt]=v1, cst[cnt]=v2;
}
inline void link(int x,int y,int v1,int v2){adde(x,y,v1,v2),adde(y,x,0,-v2);}
bool bfs(){
    memset(d,63,sizeof(d)); int Inf=d[0];
    h.push(S); inh[S]=1; a[S]=Inf; d[S]=0;
    while(!h.empty()){
        int x=h.front(); h.pop(); inh[x]=0;
        for(int i=hd[x];i;i=nxt[i]){
            int to=poi[i];
            if(val[i]>0&&d[to]>d[x]+cst[i]){
                d[to]=d[x]+cst[i]; p[to]=i;
                a[to]=min(a[x],val[i]);
                if(!inh[to]) h.push(to),inh[to]=1;
            }
        }
    }if(d[T]==Inf) return 0;
    tC+=a[T]*d[T];
    for(int i=T;i!=S;i=poi[p[i]^1])
        val[p[i]]-=a[T],val[p[i]^1]+=a[T];
    return 1;
}
void Floyd(){
    memset(dis,63,sizeof(dis));
    for(int i=0;i<=n;++i) dis[i][i]=0;
    for(int i=1,u,v,w;i<=m;++i){
        scanf("%d%d%d",&u,&v,&w);
        dis[u][v]=dis[v][u]=min(dis[v][u],w);
    }
    for(int k=0;k<=n;++k)
        for(int i=0;i<=n;++i)
            for(int j=0;j<=n;++j)
                if(k<=i||k<=j)//不能从大的转移回来
                    dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
int main(){
    scanf("%d%d%d",&n,&m,&k); Floyd();
    S=n*2+2; T=S+1;
    for(int i=1;i<=n;++i)
        link(S,i,1,0),link(i+n+1,T,1,0);
    link(S,0,k,0);//最大流量限制为k
    for(int i=0;i<=n;++i)
        for(int j=i+1;j<=n;++j)
                link(i,j+n+1,1,dis[i][j]);
    while(bfs());
    printf("%d",tC);
    return 0;
}

 

标签:cnt,val,int,P4542,ZJOI2011,v2,inh,皮卡丘,hd
来源: https://www.cnblogs.com/kafuuchino/p/10805119.html