LOJ2484 CEOI2017 Palindromic Partitions DP、回文树
作者:互联网
当我打开Luogu题解发现这道题可以Hash+贪心的时候我的内心是崩溃的……
但是看到这道题不都应该认为这是一道PAM的练手好题么……
首先把原字符串重排为\(s_1s_ks_2s_{k-1}s_3s_{k-2}...\)之后,我们不难发现:在一种对原串的回文划分中,对应的一对字符串在新的字符串上对应了一个长度为偶数的回文串。
那么设\(dp_i\)表示将新字符串的长度为\(i\)的前缀划分为若干个长度为偶数的回文串,最多划分多少份。在回文树上可以进行转移。
具体步骤可以看yyb的CF932G Palindrome Partition的题解
最后我们取\(\max(dp_i + [i < L](2 \mid i))\)作为答案。
注意悠着点开数组……
#include<bits/stdc++.h>
//this code is written by Itst
using namespace std;
const int _ = 1e6 + 7;
char s[_] , tmp[_]; int dp[_] , pre[_] , T , L;
namespace PAM{
int trans[_][26] , fa[_] , len[_] , diff[_] , anc[_];
int cnt , lst;
#define clr(x) memset(x , 0 , sizeof(x[0]) * (cnt + 1))
void init(){
clr(trans); clr(fa); clr(len); clr(diff); clr(anc);
lst = 0; cnt = 1; len[1] = -1; fa[0] = fa[1] = 1;
}
void extend(int x){
int p = lst;
while(s[x - len[p] - 1] != s[x]) p = fa[p];
if(trans[p][s[x] - 'a'])
return (void)(lst = trans[p][s[x] - 'a']);
int k = ++cnt , q = fa[p];
while(s[x - len[q] - 1] != s[x]) q = fa[q];
fa[k] = trans[q][s[x] - 'a']; trans[p][s[x] - 'a'] = k;
len[k] = len[p] + 2; lst = k;
diff[k] = len[k] - len[fa[k]]; anc[k] = diff[k] == diff[fa[k]] ? anc[fa[k]] : k;
}
}
using namespace PAM;
int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
for(scanf("%d" , &T) ; T ; --T){
memset(dp , -0x3f , sizeof(dp)); dp[0] = 0;
memset(pre , -0x3f , sizeof(pre));
scanf("%s" , tmp + 1); L = strlen(tmp + 1);
int cnt = 0;
for(int i = 1 , j = L ; i <= j ; (i + j - L) & 1 ? ++i : --j)
s[++cnt] = (i + j - L) & 1 ? tmp[i] : tmp[j];
init();
for(int i = 1 ; i <= L ; ++i){
extend(i);
for(int t = lst ; t ; t = fa[anc[t]]){
if(anc[t] != t)
pre[t] = max(pre[fa[t]] , dp[i - len[anc[t]]]);
else pre[t] = dp[i - len[anc[t]]];
if(!(i & 1))
dp[i] = max(dp[i] , pre[t]);
}
dp[i] += 2;
}
int MAX = 0;
for(int i = 0 ; i <= L ; i += 2)
MAX = max(MAX , dp[i] + (i < L));
cout << MAX << endl;
}
return 0;
}
标签:CEOI2017,Palindromic,int,dp,len,fa,LOJ2484,trans,clr 来源: https://www.cnblogs.com/Itst/p/10804639.html